Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкоупругость определение линейности

Здесь Lij — определенные линейные дифференциальные операторы по XI и Х2 (см., например, книгу [17]) они зависят от геометрии оболочки и от упругих постоянных. В случае линейной вязкоупругости упругим постоянным соответствуют некоторые линейные операторы по времени, характерные для материала оболочки.  [c.98]

Здесь 1, 2, 3 — составляющие вектора смещения по осям х , Х2, Xs Mi/ — определенные линейные дифференциальные операторы второго порядка по х , х , лТд, зависящие от упругих постоянных эти операторы можно найти в учебниках по теории упругости. В случае линейной вязкоупругости упругим постоянным соответствуют некоторые линейные операторы по времени, характерные для основного материала. Уравнения  [c.99]


Не существует точного определения Л, которое соответствовало бы интуитивному в той же мере, что и определение для [J,. Предпочтительнее всего получать Л из линейной вязкоупругой функции / (s), поскольку естественная вязкость определяется через ту же самую функцию (см. уравнение (7-2.13)). Здесь предпочтем (весьма произвольно) основывать это определение на динамическом модуле G. Из уравнения (5-1.28) имеем  [c.267]

В большинстве проведенных к настоящему времени работ по исследованию микромеханического поведения композитов явно или неявно предполагается, что компоненты композиционного материала являются линейно упругими. Однако при приложении нагрузки многие из этих материалов, в особенности материалы, которые обычно используются для изготовления матрицы, не сохраняют своих линейных свойств. Для некоторых материалов эта нелинейность может быть хотя бы частично обусловлена вязкоупругостью — временными эффектами, которые обсуждались в гл. 4. С другой стороны, как только приложенная нагрузка превосходит определенное значение, равное пределу текучести материала, для большинства материалов обнаруживается нелинейность, не зависящая от временных факторов. Этот последний тип нелинейности, проявляемый вне упругой области, называется пластичностью. Таким образом, термин упругопластическое поведение обычно означает, что рассматривается процесс нагружения в целом.  [c.197]

Подробнее с линейной и нелинейной теорией вязкоупругости можно ознакомиться, например, по книгам [38, 66, 92]. Методы решения нелинейной вязкоупругости изложены в работе [78]. Вопросы определения комплексных вязкоупругих характеристик достаточно полно изложены в книге [112]. Доказательство исключительности модели Максвелла дано в [114].  [c.46]

Исследования, в основу которых была положена линейная аппроксимация, конечно шли дальше определения численных значений постоянных упругости. Экспериментаторы интересовались линейностью при малых деформациях в термоупругости вязкоупругостью и связью между адиабатическим и изотермическим поведением тел. Интерес первостепенной важности представляли исследования фундаментальных вопросов, касавшихся анизотропии монокристаллов вопрос возможности существования изотропности в по-  [c.535]

Линейная вязкоупругость. Ползучесть многих неметаллических материалов описывается с помош ью уравнений линейной вязкоупругости. Один из путей построения соотношений этой теории состоит в комбинировании упругих и вязких свойств. Для наглядного изображения такого ряда комбинаций применяют реологические модели, представляющие собою определенные наборы пружин и вязких сопротивлений. Соотношение между напряжениями и деформациями для одномерного случая имеет вид  [c.130]


При решении линейных и нелинейных вязкоупругих соотношений особую роль играют методы определения характеристик материала, которые в случае уравнения наследственного типа сводятся к отысканию ядер ползучести и релаксации. Если ядра заданы аналитически, то их параметры определяют путем аппроксимации соответствующих экспериментальных данных. Из-за  [c.33]

Предлагаемые теорией соотношения приведены в разделе 1.2.5 [соотношения (1.2.69) для компонент тензора деформации и (1.2.69а) для компонент тензора напряжения]. Как отмечается в [34], теория вязкоупругости может считаться завершенной, если известен закон построения резольвентных ядер, т. е. соотношения (1.2.69) и (1.2.69а) являются взаимно обратными. В линейной теории ядра релаксации и ползучести связаны между собой определенными интегральными соотношениями (см. Приложение II).В общем случае нелинейной теории обратные соотношения теории ползучести не являются соотношениями теории релаксации и наоборот [36, 37, 92].  [c.50]

Если распределение времен релаксации известно, то аналитически или графически можно найти из общих определений (3.3.18) и (3.3.20) с учетом зависимости а от е и режима е ( ) или а (О характеристики линейной вязкоупругости как для гармонического, так и для импульсного режима.  [c.168]

ПРИЛОЖЕНИЕ II. МЕТОДЫ ОПРЕДЕЛЕНИЯ СПЕКТРОВ ВРЕМЕН И ЯДЕР РЕЛАКСАЦИИ И ПОЛЗУЧЕСТИ В ЛИНЕЙНОЙ ТЕОРИИ ВЯЗКОУПРУГОСТИ  [c.344]

В случае линейно деформируемых материалов, упругих или вязкоупругих, напряжения и перемещения, вызванные сосредоточенными силами, можно накладывать для определения напряжений и перемещений, обусловленных действием распределенных нагрузок или контактными давлениями при взаимодействии тел известной формы. Для нелинейных материалов принцип суперпозиции неприменим, однако Н. X. Арутюнян [13] показал, что перемещение поверхности, вызванное распределенной нагрузкой, действующей на малом участке границы полупространства из нелинейного материала, может быть представлено в виде ряда, главный член которого определяется суперпозицией перемещений, представляющих собой приведенные выше рещения для сосредоточенных сил. На основе этого приближенного подхода были найдены выражения, с помощью которых можно в произвольный момент времени численно определить размер области контакта и распределение давлений, если задан показатель степени в определяющих уравнениях (6.73) или (6.74).  [c.228]

Здесь Lfj - определенные линейные дифференщ1альные опраторы по х( и х 2 (см., например, стр. 237—238 книги [74]) они зависят от 1 ометрии оболочки и от упругих постоянных, в случае линейной вязкоупругости ynpyniM постоянным соответствуют некоторые линейные операторы по времени, характерные для материала оболочки.  [c.132]

В данном томе излагаются методы определения характеристик материала по характеристикам его компонентов (теория эффективных модулей), анализируется линейно упругое, вязкоупругое и упругопластическое поведение композ1Щионных материалов, рассматриваются конечные деформации идеальных волокнистых композитов, описывается применение статистических теорий для определения свойств неоднородных материалов. Далее приводятся решения задач о колебаниях в слоистых композитах и о распространении в них воли, критерии разрушения анизотропных сред, описание исследования композиционных материалов методом фотоупругости.  [c.4]

Эта глава посвящена главным образом аналитическому описанию линейного вязкоупругого поведения полимерных композитов и их компонентов, а также определению эффективных механических характеристик таких материалов по характеристикам их компонентов. Однако, учитывая, что композиты могут обладать и нелинейными вязкоупругими свойствами, в разд. VI затрагиваются и эти вопросы. Хотя обсуждаются только полимерные композиты, следует иметь в виду, что линейная теория сама по себе не ограничивается изучением таких материалов, но мох ет быть применена каждый раз, когда хотя бы црибли-л<енно выполняются условия линейности.  [c.103]

Проведенный выше анализ показывает, что если тангенсы углов потерь малы, то для определения динамического отклика произвольной линейной вязкоупругой структуры можно использовать численное (или аналитическое) упругое решение. Согласно уравнениям (163г) и (171), для этого необходимо знать величину, обратную упругому решению / и производную этой величины df/dX (или производные dfjd%j в случае зависимости от нескольких податливостей), в которых упругая податливость (податливости) заменены вещественной частью соответствующей комплексной податливости (податливостей). Этот результат подобен полученному выше (см. разд. IV) при нахождении эффективных комплексных характеристик ).  [c.172]


Первая из этих проблем теоретически исследована в работе Стройка [113], в которой получены удобные для применения приближенные уравнения для вычисления комплексных модулей по характеристикам свободных колебаний в произвольных линейных вязкоупругих образцах. Предлагается также метод оценки точности полученного решения. Один из важных результатов относится к точности самих уравнений, обычно используемых для определения комплексных модулей эти уравнения выводятся из элементарного дифференциального уравнения свободных. колебаний, получающегося из соответствующего уравнения для упругого материала при замене упругих постоянных комплексными модулями и податливостями. Хотя в большинстве случаев такое уравнение не является точным, Стройк установил, что для вязкоупругих материалов с малыми тангенсами углов потерь, таких, например, как аморфные полимеры при температуре ниже Tg, эта элементарная теория дает результаты, хорошо согласующиеся с истинными характеристиками.  [c.181]

Третьей характерной кривой является график зависимости между напряжением и деформацией для определенного момента времени. Ясно, что для любого момента времени этот график будет представлять собой прямую линию с постоянным углом наклона. Линейная зависимость напряжений от деформаций (В каждый момент времени есть следствие неявного предположения о линейности моделей, состоящих из пружин и цилиндров с поршнями. Эта линейная зависимость в общем случае очень важна при исследовании напряжений и деформаций поляризационно-оптическим методом, так как она позволяет распростра- нить результаты, полученные на моделях из вязкоупругого материала, на натуру из упругого материала. Большая часть вязкоупругих материалов обладает линейной зависимостью между напряжениями и деформациями в определенных пределах изменения напряжений и деформаций (или даже времени). Существуют и нелинейные вязкоупругие материалы, полезные в некоторых специальных задачах. Однако в большинстве случаев приходится выбирать материал с линейной зависимостью между напряжениями и деформациями и следить за тем, чтобы модель из оптически чувствительного материала не выходила в ходе испытания за пределы области линейности свойств материала. При фотографировании картины полос момент времени для всех исследуемых точек оказывается одним и тем же. Если используются дополнительные тарировочные образцы, то измерения на них необходимо проводить через тот же самый интервал времени после приложения нагрузки, что и при исследовании модели. Читатель, желающий подробнее ознакомиться с использованием расчетных моделей для анализа свойств вязкоупругих материалов, может обратиться к другим публикациям по данному вопросу, в частности к книге Алфрея [1] ).  [c.122]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

В главе рассматриваются определяющие соотношения МДТТ в операторном виде, которые в дальнейшем конкретизируются на различных примерах. Дается математическое определение композита и модели МДТТ. Рассмотрены модели линейного упругого, вязкоупругого и упруго-пластического тела (теория малых упругопластических деформаций). Дается схематическое описание экспериментов, необходимых для проведения расчетов по выбранной модели. Читателю рекомендуется сначала ознакомиться с приложением I (и частично с приложением II), чтобы были понятны используемые в главе обозначения.  [c.7]

С техникой проведения эксперимента можно, например, ознакомиться по книге [101]. Методика проведения экспериментов по определению физико-механических характеристик деформируемого твердого тела изложена в [4, 36, 64]. Схема экспериментов по определению материальных функций линейной и нелинейной теории вязкоупругости имеется в [38, 78, 84], причем в работе [84] описывается схема экспериментального определения ядер g p для вязкоупругих материалов с релак-сирующим объемом. Гипотеза макрофизической определимости сформулирована в монографии [34].  [c.47]

Метод осреднения применяется к решению квазистатически Е задач линейной теории вязкоупругости для композитов. Особое внимание уделяется теории нулевого приближения. Для слоистых-вязкоупругих композитов тензоры эффективных ядер релаксации и ползучести находятся в явном виде. Выясняются особенности строения этих тензоров в случае структурной анизотропии. Вводится понятие канонических вязкоупругих операторов и описывается схема экспериментального определения их ядер. Дается описание метода численной реализации упругого решения и на" двух конкретных задачах показывается его применение. Даются постановки связанной задачи термовязкоупругости для физичес- ки линейных композитов и квазилинейной теории вязкоупругости, для композитов.  [c.268]


Исследование вязкоупругих свойств. При проектировании конструкций из термопластиков необходимо учитывать ползучесть этих материалов, заключающуюся в постепенном нарастании деформаций при действии постоянно приложенной нагрузки. В связи с этим деформации не могут быть представлены однозначно в виде функции напряжения, за исключением ограниченного по времени периода нагружения, для которого возможно приближенное описание реального поведения материала. Однако при малых деформациях определенные пластики можно рассматривать как обладающие линейной вязкоупругостью. Например, можно принять, что прогиб при изгибе невесомой балки длиной L под действием нагрузки W, приложенной в середине пролета балки, равен WL I48E,L, где Et — модуль упругости при ползучести, который зависит от длительности нагружения. Модуль Et можно подобрать для каждого вида деформации методом последовательных приближений. Из рис. 6.21 видно, что такой подход правомерен и для трехслойной балки при длительности действия нагрузки до 350 ч, когда имеется точное совпадение расчетных и экспериментальных данных.  [c.157]

Допустим, что рассматриваемое вязкоупругое тело при достаточно высоких напряжениях проявляет также свойства пластичности или высокоэластичности, не зависящие от времени. Выясним, в каких случаях для такого тела справедливо представление о вязкости разрушения (концепция /(с), которое, как было обнаружено ранее, при определенных условиях имеет смысл для любых упруго-пластических моделей. Обозначим через ffs характерный предел текучести, а через d — ха рактерный линейный размер пластической области вблизй конца трещины, равный  [c.297]

Альтенбах [11] рассматривает вопрос определения приведенных свойств (эффективных) двумерной линейно вязкоупругой среды. При этом заранее не вводятся какие-либо ограничения на функцию распределения вязкоупругих характеристик по толщине пластины. Приведенные свойства определяются с помощью точных пространственных решений для слоя и их сопоставлением с решениями по теории пластин.  [c.9]

Линейная теория вязкоупругости основывается, с одной стороны, на основополагающих концёпциях Больцмана и Вольтерра, с другой стороны, на теории вязко-упругих реологических моделей, восходящей к Дж. Максвеллу и В. Фойхту. Объединяя свойства упругих тел и вязких жидкостей в более общей связи, эта теория имеет дело с линейными дифференциальными или интегро-дифференциальными уравнениями, поэтому в ней открывается широкий простор для приложения эффективных математических методов. Интерес к этой теории существовал все время, но отсутствие реальных технических приложений не стимулировало ее интенсивную"разработку. Ранние исследования в этой области (А. Ю. Ишлинский, А. Н. Герасимов, А. Р. Ржаницын, Ю. Н. Работнов и др.), по существу, не имели виду решение определенных технических задач, а были направлены скорее на извлечение некоторых математических следствий из принятых моделей.  [c.122]

Одним из основных вопросов в теории вязкоупругости является выбор ядер интегральных уравнений (1.5) и (1.6), нахождение резольвент, а также достоверное определение их параметров. Анализ экспериментальных кривых ползучести показывает, что прн малых t деформация после приложения нагрузки быстро нарастает, так что вначале кривая ползучести практически сливается с осью ординат. Попытки определения фактической скорости ползучести в опыте при о — onst для очень малых t оканчиваются неудачей, так как или скорость ползучести остается больше той, какая может быть измерена применяемыми регистрирующими приборами, или не удается исключить колебательные явления. В связи с изложенным многие исследователи пришли к заключению, что функция ползучести для реального материала должна обязательно иметь слабую (интегрируемую) особенность. Поэтому заметна тенденция использовать для анализа реологических задач ядра интегральных уравнений, имеющие слабую особенность при t =0. Систематизация таких ядер" и их резольвент проведена в работе [95] (табл. 1.1). Отметим, что дробноэкспоненциальная функция Ю. Н. Работнова может использоваться не только как ядро релаксации, но и как ядро ползучести, например, когда материал обнаруживает ограниченную во времени ползучесть. Использование ядра Эа для решения практических задач представляется особенно перспективным в связи со следующими обстоятельствами. Во-первых, на их основе Ю. И. Работновым [138] и М. И. Розовским [149, 150] разработан метод решения задач линейной вязкоупругости с применением принципа Вольтерры. Этими авторами создана алгебра операторов, согласно которой можно производить математические действия умножения, деления и т. д. над выражениями, содержащими интегральные операторы. Дальнейшее развитие алгебры операторов имеется в работах [65, 155]. Во-вторых, Эа — функции протабулированы и изданы отдельной книгой [142]. В-третьих, разработан достаточно эффективный метод определения параметров Эа — функции для реального материала на ЭВМ [126, 163].  [c.21]

Ранние работы [172, 185, 235] указывали, что метод ТВА применим только к каучукоподобным и аморфным полимерам с линейной вязкоупругостью. Как уже отмечалось, метод был распространен на частично кристаллические полимеры. В настоящее время температурный интервал, в котором осуществляется приведение, постепенно расширяется и захватывает для некоторых полимеров области стеклования и высокоэластичности одновременно. В [181] экспериментально показано, что метод ТВА может быть распространен на материалы с нелинейной вязкоупругостью. С другой стороны, известно, что в области стеклообразного состояния у аморфных полимеров существуют вторичные переходы, определенные как динамическими, так и квазистатиче-скими методами [23, 158]. В п. 2.3, а также в работах [46, 128] было показано, что кривые а—е также чувствуют релаксационные переходы. Область стеклообразного состояния может быть подразделена на подсостояния [158], в которых различен характер протекания релаксационных процессов Для частично кристаллических полимеров характерно большое число различных переходов [23], поэтому вопросы, связанные с редуцированием, еще больше усложняются.  [c.82]

Микроскопические характеристики течения, как ясно из ранее изложенного, зависят от механического режима, вида нагружения и температурной области их определения. Внешние условия прежде всего определяют состояние полимерного материала [3] стеклообразное, высокоэластическое, вязкотекучее. Вопросы переходов из одного состояния в другое и их связь с релаксационными явлениями в полимерах [154—157] более подробно будут рассмотрены в следуюплей главе, так как они приобретают первостепенное значение применительно к резинам, эксплуатируемым в различных температурных и временных условиях. Экспериментальные макроскопические характеристики течения (эффективные вязкости) полимеров определяются релаксационными спектрами. В экспериментах на растяжение Тобольский [72] и Ниномия [158] показали для ряда полимеров возможность описания вязкоупругих свойств в линейном лриближении  [c.61]

Первый основной закон термодинамики не накладывает каких-либо ограничений на определяюш,ие уравнения. Это же относится и к третьему закону. Второй основной закон термодинамики исключает процессы с отрицательным притоком энтропии. Это условие сужает класс допустимых уравнений состояния, однако не до желаемой степени. Более обещаюш,им здесь является принцип Онзагера [22], поскольку он относится к необратимым процессам и доставляет определенную информацию о направлении таких процессов, более точную, нежели второй основной закон. В самом деле, как было показано Био [1], принципа Онзагера достаточно для исследования некоторых проблем линейной вязкоупругости и установления так называемой вязкоупругой аналогии. К сожалению, однако, применение принципа Онзагера ограничивается только линейными задачами и поэтому не может дать результатов в более интересных случаях нелинейных моделей сплошных сред (неньютоновы жидкости, нелинейные вязкоупругие тела, вязкопластичные и пластичные тела и др.).  [c.9]



Смотреть страницы где упоминается термин Вязкоупругость определение линейности : [c.276]    [c.114]    [c.204]    [c.24]    [c.33]    [c.154]    [c.352]   
Механика композиционных материалов Том 2 (1978) -- [ c.104 ]



ПОИСК



Вязкоупругость

Вязкоупругость линейная

Методы определения спектров времен и ядер релаксации и ползучести в линейной теории вязкоупругости



© 2025 Mash-xxl.info Реклама на сайте