Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Рейнольдса для турбулентного движения жидкости

Задача об изменении гидравлического сопротивления трубы при неустановившемся турбулентном движении жидкости является настолько сложной, что попытки сколько-нибудь строгого ее решения до сих пор встречают непреодолимые трудности. Это связано в основном с неизвестностью законов, которым подчиняется турбулентность в неустановившемся потоке. При ряде предположений оказываются возможными только приближенные оценки изменения гидравлического сопротивления трубы. Одно из исходных предположений состоит в том, что характерное для исследуемого неустановившегося процесса время намного превосходит период турбулентных пульсаций. В этом случае могут использоваться уравнения Рейнольдса осредненного турбулентного движения жидкости. При осесимметричном потоке с пренебрежимо малым изменением давления по радиусу сечения трубы уравнения Рейнольдса для движения несжимаемой жидкости, записанные в цилиндрических координатах г и л , имеют вид [35]  [c.208]


Уравнения движения, выраженные через осред-ненные скорости (уравнения Рейнольдса), для турбулентного неустановившегося движения несжимаемой жидкости имеют вид  [c.19]

Введение в уравнение (15.21) величины модуля скорости позволяет рассматривать возможность изменения направления потока во времени без изменения индексов величин давления. Применение для расчета неустановившегося движения жидкости уравнения (15.21) является первым приближением, так как значения коэффициентов а, (3 и для неустановившегося движения неизвестны. По существу, надо ставить задачу на базе уравнений Навье-Стокса для ламинарного режима течения и уравнений Рейнольдса для турбулентного режима течения.  [c.146]

УРАВНЕНИЯ РЕЙНОЛЬДСА ДЛЯ РАЗВИТОГО ТУРБУЛЕНТНОГО ДВИЖЕНИЯ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.89]

При низкочастотных колебаниях влияние их на структуру турбулентных потоков, вероятно, осуществляется посредством изменения профиля средней скорости в пристеночной области течения. В этом случае для качественного анализа могут быть использованы нестационарные уравнения Рейнольдса. Следует отметить, что только при сравнительно низкочастотных колебаниях возможно использовать метод осреднения турбулентных пульсаций по минимальному периоду их возмущений, который в данном случае много меньше, чем период основных регулярных колебаний. Для несжимаемой жидкости в случае плоскопараллельного нестационарного течения уравнение движения Рейнольдса имеет вид  [c.184]

В современной гидродинамике для описания турбулентных течений используется гипотеза Рейнольдса о том, что действительное (актуальное) движение определяется уравнениями Навье-Стокса [13]. Применим эти уравнения для случая изотермического трехмерного движения несжимаемой вязкой ньютоновской жидкости. При актуальном движении жидкости, по Рейнольдсу, имеет место линейная суперпозиция осреднен-пых и пульсационных гидродинамических величин  [c.37]

Уравнение (9.4.11) для ноля скоростей совместно с уравнением (9.4.8) для давления и выражением (9.4.15) для корреляций случайных сил лежат в основе статистической теории турбулентного движения в несжимаемой жидкости. Хотя уравнение (9.4.11) на первый взгляд кажется не сложнее, чем гидродинамическое уравнение Навье-Стокса, тот факт, что теперь v(r, ) — случайная переменная сильно усложняет задачу. Дело в том, что для поля скоростей v, усредненного по некоторому промежутку времени или по реализациям, не удается получить замкнутого уравнения. Действительно, после усреднения (9.4.11) (скажем, по реализациям) в уравнение для v войдут корреляционные функции пульсаций Jv = v —v типа ( 6v 6vp). В уравнения для этих функций войдут корреляционные функции более высоких порядков и т. д. Мы получим так называемую цепочку уравнений Рейнольдса проблему замыкания которой до сих пор не удается решить. Дело также осложняется тем, что в задаче фактически нет малого параметра, поэтому не удается воспользоваться теорией возмущений. Как известно, в таких случаях необходим метод, позволяющий сравнительно просто получать общие соотношения и строить самосогласованные приближения, не опирающиеся на теорию возмущений. С этой точки зрения формулировка теории турбулентности на основе стохастического уравнения (9.4.11), при всей ее внешней простоте, мало что дает. Гораздо удобнее перейти к описанию турбулентного движения с помощью функционала распределения для поля скоростей и вывести для него уравнение Фоккера-Планка, которое в компактной форме содержит информацию о всей цепочке уравнений Рейнольдса.  [c.258]


Обобщим прежде всего на случай турбулентного пограничного слоя основное интегральное соотношение (91) 87 предыдущей главы. Для этого заметим, что уравнения турбулентного пограничного слоя могут быть составлены из уравнений Рейнольдса (11) совершенно аналогично тому, как уравнения ламинарного пограничного слоя были составлены из уравнений движения вязкой жидкости. Будем иметь аналогично (89) 87  [c.621]

В результате для элемента модели осредненного турбулентного потока получают дифференциальные уравнения движения, названные уравнениями Рейнольдса, В частном случае несжимаемой жидкости эти уравнения в прямоугольной системе координат в сокращенной форме записываются  [c.55]

Проблема турбулентности возникла в середине прошлого века, когда между теоретической гидродинамикой (с ее уравнениями Навье-Стокса) и прикладными задачами о течении жидкости или газа обнаружилось множество противоречий. Например, экспериментаторам было известно, что при достаточно больших скоростях течения жидкости по трубе сопротивление движению должно расти как квадрат средней (по сечению) скорости (закон Шези). Из теории же следовало, что сопротивление растет пропорционально первой степени скорости (закон Пуазейля). Первый шаг к примирению этих противоречий сделал О. Рейнольдс, опубликовавший в 1883 г. работу о результатах опытов с окрашенными струйками в потоке, где он ввел число Ке = УО/и В — диаметр, V — скорость, р — кинематическая вязкость) и впервые связал закон Пуазейля с ламинарным течением жидкости, а закон Шези с турбулентным движением. Он установил, что ламинарное движение устойчиво только при Ке < 2000, а при больших числах Ке возникает турбулентность. Так, для воды, текущей по трубе диаметром 1 см при комнатной температуре, ламинарный режим, как правило, кончается уже при средней скорости течения 30 см/с.  [c.494]

Наконец, можно заметить, что поведение решения с конечным затуханием имеет сильное сходство со структурой турбулентности, исследованной Бэтчелором и Таунсендом 1). Движение жидкости имеет характер быстрых колебаний в конечной части поля и очень медленно меняется в другой его части. Это снова демонстрирует часто подчеркиваемое фундаментальное свойство движения вязкой жидкости при больших числах Рейнольдса. В некоторых случаях среда ведет себя как идеальная жидкость в других случаях действием вязкости пренебрегать нельзя, даже если она очень мала. Все более тонкая пространственная структура течения жидкости как раз достаточна для того, чтобы уравновесить исчезание вязкости и сохранить влияние вязких членов в уравнениях Навье—Стокса.  [c.172]

При больших числах Рейнольдса R велики также и числа Рейнольдса Rx крупномасштабных движений. Но большие числа Рейнольдса эквивалентны малым вязкостям. Мы приходим, следовательно, к результату, что для крупномасштабного движения, являющегося как раз основным во всяком турбулентном потоке, вязкость жидкости не играет роли и может быть положена равной нулю, так что это движение описывается уравнением Эйлера. В частности, отсюда следует, что в крупномасштабном движении не происходит заметной диссипации энергии.  [c.148]

Приведённый в этом параграфе вывод показывает вполне чётко, что уравнения Прандтля являются предельной формой уравнений Навье — Стокса при Р о-э. Необходимо, однако, отметить следующее обстоятельство. При очень больших числах Рейнольдса движение вязкой жидкости имеет обычно турбулентный характер. С этой точки зрения может показаться, что предельный переход Р—>оо не может иметь физического смысла. На самом деле это не так, а именно пусть число Рейнольдса Р/,, характеризующее переход ламинарной формы течения в турбулентную, очень велико, тогда для больших чисел Рейнольдса Р, не превосходящих мы с очень большим приближением можем считать верными уравнения Прандтля, так как эти уравнения отличаются от точных уравнений членами порядка малыми при больших Р.  [c.553]


Как уже было указано в 1, турбулентное движение жидкости характеризуется неупорядоченностью траекторий отдельных частиц, наличием пульсаций скоростей и давлений во времени и интенсивным обменом всеми качествами между соседними областями течения. Всё это создаёт весьма большие трудности для теоретического изучения закономерностей турбулентного движения жидкости. Первая попытка теоретического подхода к изучению турбулентного движения жидкости была предпринята О. Рейнольдсом в цитированной выше работе. Им были установлены дифференциальные уравнения осреднённого движения жидкости и введён в рассмотрение тензор пульсационных напряжений.  [c.452]

Развитие технической механики жидкости (гидравлики) в XIX в. за рубежом. Зародившееся во Франции техническое (гидравлическое) направление механики жидкости быстро начало развиваться как в самой Франции, так и в других странах. В этот период в той или другой мере были разработаны или решены следующие проблемы основы теории плавно изменяющегося неравномерного движения жидкости в открытых руслах (Беланже, Кориолис, Сен-Венан, Дюпюи, Буден, Бресс, Буссинеск) вопрос о гидравлическом прыжке (Бидоне, Беланже, Бресс, Буссинеск) экспериментальное определение параметров, входящих в формулу Шези (Базен, Маннинг, Гангилье, Куттер) составление эмпирических и полуэмпирических формул для оаределения гидравлических сопротивлений в различных случаях (Кулон, Хаген, Сен-Венан, Пуазейль, Дарси, Вейсбах, Буссинеск) открытие двух режимов движения жидкости (Хаген, Рейнольдс) получение так называемых уравнений Навье — Стокса, а также уравнений Рейнольдса на основе использования модели осредненного турбулентного потока (Сен-Венан, Рейнольдс, Буссинеск) установление принципов гидродинамического подобия, а также критериев подобия (Коши, Риич, Фруд, Гельмгольц, Рейнольдс) основы учения о движении грунтовых вод (Дарси, Дюпюи, Буссинеск) теория волн (Герстнер, Сен-Венан, Риич, Фруд,  [c.28]

Прежде всего уравнения (5-8), (5-9) и (5-10) описывают действительное течение довольно хо зошо при условии, что число Рейнольдса m fp., отнесенное к толщине пленки, не превышает 400. Однако даже при меньших числах Рейнольдса на поверхности жидкости могут возникнуть волны и другие нестациопарности. При числах Рейнольдса выше 500 движение становится турбулентным. Поскольку анализу поддается лишь случай установившегося ламинарного течения, приведенные выше уравнения и будут приняты нами в качестве основы для теоретического исследования массопереноса. Однако следует заранее ожидать, что расчетная скорость массопереноса может поэтому оказаться заниженной.  [c.155]

В отличие от молекулярной теории газов, в теории турбулентности приходится говорить об условных группах частиц, охваченных одним, общим для них, движением, я об условных скоростях возмущений этих групп, возмущающих основной видимый поток. Теории турбулентности Прандтля и Тэйлора, исходящие из одних и тех же представлений Рейнольдса о природе турбулентности, расходятся в развитии этих представлений. Следуя идеям Максвелла, и Прандтль, и Тэйлор вводят в рассмотрение величину, аналогичную длине среднего свободного пробега молекулы, — длину пути перемешивания. В этой величине заложено различие в протекании и понимании явлений молекулярной вязкости в газах и турбулентности Б жидкостях. Теория турбулентности Рейнольдса излагается помимо его статей [30] во всех руководствах гидродинамики [16, 8, 7]. Турбулентностью в атмосфере занимаются в метеорологии. Методами усреднения метеорологических величин и уравнений гидродинамики, описывающих метеорологические явления, занимался крупный советский метеоролог А. Фридман [15]. Методами оореднения гидродина.мических величин и уравнений гидродинамики в настоящее время занимаются академики А. Н. Колмогоров [17], Л. Д. Ландау [181 и А. М. Обухов [19].  [c.223]

З равненпя (59) называются уравнениямп Рейнольдса для осредненного турбулентного движения несжимаемой жидкости они были выведены Рейнольдсом в 1895 г. Этп уравнения можно рассматривать как своего рода обобщение уравнений Навье-Стокса на случай турбулентного двшкения. В самом деле, еслп пульсации скорости" в потоке отсутствуют, то последние три слагаемых в каждом из этих уравнений отпадают, осредненные вс.личины в этом случае совпадают с актуальными, и из уравиенип Рейнольдса получаются уравнения Навье-Стокса, как частный случай.  [c.546]

Мы начнем с вывода осредненных дифференциальных уравнений баланса вещества, количества движения и энергии (опорный базис модели), предназначенных для описания развитых турбулентных течений многокомпонентной смеси химически активных газов, и проанализируем физический смысл отдельных членов этих уравнений ( ЗЛ). Особое внимание будет уделено выводу (традиционным способом, основанном на понятии пути смешения) замыкающих реологических соотношений для турбулентных потоков диффузии, тепла и тензора турбулентных напряжений Рейнольдса ( 3.3). Прогресс в развитии и применении полуэмпирических моделей турбулентности первого порядка замыкания (так называемых градиентных моделей) для однородной сжимаемой жидкости (см., например, Таунсенд, 1959 Бруяцкий, 1986 Ван Мигем, 1977)) позволил получить обобщения некоторых из подобных моделей на важный для целей геофизики и аэрономии случай свободных стратифицированных течений многокомпонентной реагирующей смеси с поперечным сдвигом скорости Маров, Колесниченко, 1987).  [c.114]

Ф. И. Франкль построил систему гидродинамических уравнений турбулентного взвесенесущего потока, составив отдельно для каждой из двух компонент потока следующие уравнения уравнения неразрывности и динамические уравнения, уравнения энергии осредненного движения, уравнения энергии пульсационного движения, а также термодинамические уравнения. Поскольку целью было описание турбулентного движения двухкомпонентной смеси, Франкль применил операцию четырехмерного (пространственно-временного) осреднения, при этом осреднение было проведено отдельно по каждой из двух долей элементарного объема смеси — по доле объема, занятой жидкостью, и по доле объема, занятой твердыми частицами. Это позволило построить непрерывную модель дискретной среды. Хотя, подобно уравнениям О. Рейнольдса для однокомпонентного турбулентного потока, полученная система уравнений и оказалась незамкнутой, все же предложенный Франклем метод вывода уравнений турбулентного двухкомпонентного потока является, пожалуй, наиболее строгим из известных. Поэтому полученные им уравнения многие авторы рассматривают как заманчивую отправную базу для дальнейшего развития теории взвесенесущих турбулентных потоков.  [c.757]


Как известно, Осборну Рейнольдсу удалось так преобразовать гидродинамические уравнения движения вязкой однородной несжимаемой жидкости, что в эти полученные им уравнения входят только некоторые осредненные значения компонент скорости и вместе с ними шесть величин, которые характеризуют состояние турбулентности в данном месте и в данное время. Эти величины, таким образом, представляют шесть новых неизвестных функций координат и времени, и полученной Рейнольдзом системы уравнений недостаточно для того, чтобы из них и из начальных значений определить неизвестные функции.  [c.45]

Метод замыкания системы уравнений для моментов (или спектральных функций) с помощью отбрасывания моментов некоторого порядка имеет определенное оправдание лишь в применении к слабой турбулентности с небольшим числом Рейнольдса, приближающейся к заключительному периоду вырождения. Но, согласно данным 15, этот период вырождения с большим трудом реализуется в лабораторных экспериментах, причем отвечающие ему движения жидкости лишь с натяжкой можно считать турбулентными в обычном смысле этого слова. Основной же интерес для теории турбулентности представляет противоположный случай развитой турбулентности с большим числом Рейнольдса, в которой турбулентное перемешивание, связанное с инерционным движением частиц жидкости, играет значительно большую роль, чем вязкое трение. В этом случае простое отбрасывание моментов определенного порядка приводит к совершенно неверным (а часто даже и бессмысленным) результатам поэтому здесь успеха можно добиться, лишь используя какие-то другие приемы замыкания системы уравнений для моментов. К настоящему времени разработан ряд тйких приемов (о некоторых из них мы еще будем говорить позже — в п. 19.6 и 29), но пока ни один из них не оказался вполне удовлетворительным (см. обсуждение этого вопроса в статье Крейчнана (1967)). Тем не менее, для того чтобы проиллюстрировать основные черты теорий, опирающихся на те или иные методы замыкания уравнений для моментов, и разъяснить характер получающихся при этом выводов, мы рассмотрим здесь сравнительно подробно наиболее старый (фактически предложенный еще в работах Миллионщикова (1941а, б)) и,.по-видимому, простейший из методов замыкания, не предполагающих, что все моменты некоторого порядка тождественно равны нулю. А именно, мы попробуем воспользоваться для замыкания уравнений относительно вторых и третьих моментов поля скорости рассматривавшейся в предыдущем параграфе гипотезой Миллионщикова об обращении в нуль семиинвариантов четвертого порядка поля скорости, позволяющей выразить четвертые моменты скорости через вторые. Предварительно, однако, мы скажем несколько слов по поводу общей гипотезы об обращении в нуль семиинвариантов скорости фиксированного порядка й- -1 4, позволяющей построить целую последовательность все  [c.248]

Для ИПХТ-М, как и для ИТП, характерен турбулентный режим течения, и при определении движения расплава решающее значение имеет турбулентная вязкость v . Расчет поля скоростей движения в меридиональных плоскостях (v) ведется полуэмпирическим методом (методика 8) решается уравнение движения Навье—Стокса (с учетом дополнительных рейнольдсовых членов) совместно с уравнением несжимаемости жидкости, причем в решение вводится поле эффективной вязкости Нэ> базирующееся на экспериментальных данных о распределении V в исследованных типичных объектах. Здесь = v + v , где V — физическое значение кинематической вязкости (обычно вводится через "эффективное число Рейнольдса Reg = Vq Во мно-  [c.93]

Отсюда вовсе не следует, что статистический режим мелкомасштабных пульсаций вообще не будет зависеть от особенностей осредненного течения, т. е. во всех потоках будет одним и тем же. Осредненное течение будет воздействовать на режим мелкомасштабных пульсаций, но только косвенно — через величину того потока энергии, который передается от осредненного течения через всю иерархию возмущений разных порядков и в конце концов рассеивается, переходя в теплоту. Будем считать, что число Рейнольдса потока настолько велико, что однородность, изотропность и стационарность статистического режима достигаются уже для относительно крупных возмущений, на которые вязкость еще непосредственно не влияет (т. е. для возмущений с числом Рейнольдса, намного превосходящим Re r). В таком случае средняя удельная диссипация энергии е (т. е. среднее количество энергии, переходящей в теплоту в единице массы жидкости за единицу времени) будет равна среднему количеству энергии, поступающей за единицу времени в единицу массы от осредненного течения к наиболее крупным из локально изотропных возмущений. Следовательно, величина е и будет той характеристикой крупномасштабных движений, которая только и влияет на статистический режим мелкомасштабных пульсаций (в частном случае изотропной турбулентности этот вывод был уже сформулирован на стр. 181). Величина е в силу общих уравнений гидромеханики равна  [c.318]


Смотреть страницы где упоминается термин Уравнения Рейнольдса для турбулентного движения жидкости : [c.230]    [c.383]    [c.232]    [c.219]    [c.171]    [c.290]    [c.8]    [c.21]    [c.216]    [c.293]    [c.132]   
Механика сплошной среды. Т.2 (1970) -- [ c.251 ]



ПОИСК



283 — Уравнения жидкости

Движение жидкости турбулентное

Движение турбулентное

Рейнольдс

Рейнольдса для турбулентного

Рейнольдса для турбулентного движения

Рейнольдса жидкость

Рейнольдса уравнения для турбулентного движения

Турбулентное движение жидкости 33 Турбулентность

Уравнение Рейнольдса

Уравнение движения Рейнольдса для турбулентного режима течения вязкой жидкости

Уравнения Рейнольдса для развитого турбулентного движения несжимаемой жидкости

Уравнения Рейнольдса для турбулентного

Уравнения Рейнольдса осредненного турбулентного движения жидкости

Уравнения движения жидкости

Частные случаи асинхронное подавление и возбуждение автоколебаний некоторые приложения Уравнение Рейнольдса как виброреологическое уравнение Эффективная вязкость жидкости при турбулентном движении влияние внешнего вибрационного воздействия



© 2025 Mash-xxl.info Реклама на сайте