Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая Поле температур в различных

Тождественность уравнений (10) и (11) отражает факт подобия тепловых и электрических явлений. При этом безразмерный потенциал в узловой точке /7jj будет равен соответствующей безразмерной температуре тг Таким образом, измеряя на модели безразмерные потенциалы Ui, в различных узлах сетки, можно составить полное представление о поле температур в моделируемом объекте.  [c.419]

Использование метода диффузии от системы линейных источников тепла для определения коэффициента /), при нестационарном протекании процесса имеет свои особенности. Это связано, прежде всего, с необходимостью рассматривать в общем случае задачу в сопряженной постановке, так как процессы теплопереноса в теплоносителе и в стенках труб взаимосвязаны, а условия на границе с теплоносителем неизвестны. При использовании модели течения гомогенизированной среды удается избежать необходимости определения полей температур в стенках труб и заранее задать граничные условия, используя понятие коэффициента теплоотдачи, зависящего от граничных условий. При этом тепловая инерция витых труб. учитывается введением в систему уравнений, описывающих нестационарный тепломассоперенос в пучке, уравнения теплопроводности для твердой фазы, а изменение температуры труб во времени и пространстве идентично изменению температуры твердой фазы гомогенизированной среды. Система уравнений (1.36). .. (1.40), приведенная в гл. 1, позволяет рассчитать поля температур теплоносителя и стенки труб (твердой фазы), зависящие от продольной и радиальной координат в различные моменты времени, т.е. решить двумерную нестационарную задачу. В гл. 5 будет рассмотрена система уравнений и метод ее расчета, которые позволяют решить задачу и при асимметричной неравномерности теплоподвода. Однако, как показали проведенные исследования стационарных трехмерной и осесимметричной задач, коэффициент В,, определенный для этих случаев течения, остается неизменным при прочих равных условиях. Поэтому при экспериментальном исследовании нестационарного тепломассопереноса в пучках витых труб целесообразно ограничиться рассмотрением только осесимметричной задачи. Такая задача решена впервые, поскольку все предыдущие исследования ограничивались использованием одномерного способа описания процессов нестационарного теплообмена в каналах, когда рассматривается течение с постоянной по сечению канала скоростью и температурой, которые изменяются только по длине канала. При этом температура стенки определяется из уравнения Ньютона для теплового потока по экспериментальным значениям коэффициента теплоотдачи [24, 26].  [c.57]


Возникает вопрос, как установить связь, пока хотя бы качественную, между этими различными полями. Выше было указано, что возникновение теплового потока связано не с абсолютным значением температуры тела, а с наличием разности температур в различных его точках. Но разности температур можно приписать вполне определенное направление, а именно если соединить прямой две точки тела, то разность между их температурами можно считать положительной в направлении более высоких температур и отрицательной в направлении более низких температур.  [c.9]

Расчет полей температур в роторах и лопатках газовых турбин в процессе их прогрева и при установившемся тепловом режиме связан с необходимостью оценивать значения коэффициентов теплообмена-на различных участках исследуемого тела. Метод оценки коэффициентов теплообмена в телах сложной формы основан на том, что должны быть получены экспериментально изменения во времени температуры в исследуемом поле и температуры среды. Затем проводятся решения соответствующих задач на гидравлическом интеграторе для рассматриваемого тела, в которых задаются полученные изменения. При решении задач коэффициент теплообмена подбирается таким образом, чтобы результаты расчета совпали с экспериментальными данными.  [c.445]

Корпус сушилки / состоит из отдельных секций, расположенных на некоторой высоте над уровнем пола, и имеет два наклонных тамбура 5, являющихся тепловым затвором, препятствующим выходу горячего воздуха через открытые проемы. Для уравнивания температуры в различных зонах камеры предусмотрен венти-  [c.312]

Включая в систему уравнений для потока уравнение энергии (теплопроводности) окружающих стенок, можно избежать необходимости задания граничных условий для потока. При этом лишь предполагают равенство температур и тепловых потоков на границе раздела поток — тело, а граничные условия задают на внешних границах стенок канала и на входе в канал. Решив такую задачу, получают в общем случае сразу поля температур в стенках и потоке. Однако нахождение решений сопряженных задач в общей постановке связано с большими трудностями, поэтому необходимо делать различные упрощения, вплоть до использования коэффициента теплоотдачи. По существу приходится разделять задачу на две сначала теоретически нлн экспериментально находить зависимость коэффициента теплоотдачи от типичных законов изменения граничных условий во времени (или постулируется независимость от этих изменений), а затем решать задачу теплопроводности для стенки с граничным условием третьего рода.  [c.146]


В предыдущем параграфе мы учли непостоянство магнитной проницаемости по координате г вследствие зависимости ее от напряженности магнитного поля. Так как тепловая мощность с ростом координаты г непрерывно уменьшается, то при малых временах нагрева температура в различных частях нагреваемого металла будет  [c.28]

Плоскостное поле. Температура в плоскостном поле определяется как функция X, у и t. Тепловое плоскостное поле имеет место при сварке различного рода листов небольшой толщины, при котором распределение температуры по толщине можно принять равномерным.  [c.111]

Тепловые потоки возникают в телах и между телами только при наличии разности температур. Температурное состояние тела или системы тел можно охарактеризовать с помощью температурного поля, под которым понимается совокупность мгновенных значений температур во всех точках изучаемого пространства. Температура различных точек тела t определяется координатами х, у, z и временем т. Поэтому в общем случае  [c.245]

По аналогии с полем скоростей можно рассматривать поля температур и концентраций вещества при наличии диффузии. Если температуры тела и потока будут различны, то величина области, в которой происходит изменение от температуры тела к температуре потока, будет зависеть от теплового числа Рейнольдса (Х.21). Обозначив толщину области изменяющейся температуры б . и  [c.294]

На некотором расстоянии I от входа в трубу и далее вниз по потоку / /н.т между жидкостью и стенками происходит стабилизованный теплообмен. Стабилизованным называют конвективный теплообмен в трубе на таком удалении от сечения, после которого сохраняется определенный закон изменения граничных условий на стенке по длине, что поле температуры практически не зависит от характера распределения температуры и скорости в этом сечении. Когда свойства жидкости постоянны при некоторых типах граничных условий на стенке (например, при постоянной температуре стенки или постоянной плотности теплового потока на стенке), распределение температуры (отсчитанной от температуры стенки) по сечению потока при стабилизованном теплообмене остается подобным самому себе в различных сечениях трубы. При этом коэффициент теплоотдачи, отнесенный к местному температурному напору, не изменяется по длине трубы.  [c.315]

Наиболее полные математические модели процессов теплообмена протекающих в различных технических устройствах, учитывают наличие неравномерных пространственно-временных полей у искомых величин — температур твердых тел и жидкостей, тепловых потоков, интенсивностей излучения и т. д. Такие модели представляют собой системы дифференциальных уравнений в частных производных, интегральных и интегродифференциальных уравнений. Однако при решении реальных технических задач, как правило, не ограничиваются использованием только таких моделей, что объясняется несколькими причинами.  [c.6]

Расчет температур и тепловых потоков в различных точках элементов разбиения, проводимый на основе принятой аппроксимации температурного поля в элементе.  [c.147]

Температурное поле. Температура, как известно, характеризует тепловое состояние тела и определяет степень его нагретости. Так как тепловое состояние отдельных частей тела в процессе теплопроводности различно, то в общем случае.температура t является функцией координат х, у, z и времени т, т. е.  [c.8]

Любой процесс нагревания или охлаждения тела можно условно разделить на три режима. Первый из них охватывает начало процесса, когда характерной особенностью является распространение температурных возмущений в пространстве и захват все новых и новых слоев тела. Скорость изменения температуры в отдельных точках при этом различна, и поле температур сильно зависит от начального состояния, которое, вообще говоря, может быть различным. Поэтому первый режим характеризует начальную стадию развития процесса. С течением времени влияние начальных неравномерностей сглаживается и относительная скорость изменения температуры во всех точках тела становится постоянной. Это — режим упорядоченного процесса. По прошествии длительного времени — аналитически по истечении бесконечно большого времени— наступает третий, стационарный режим, характерной особенностью которого является постоянство распределения температур во времени. Если при этом во всех точках тела температура одинакова и равна температуре окружающей среды, то это — состояние теплового равновесия.  [c.223]


Приведем некоторые результаты исследования. Измерения температур производились при испытаниях на специальном стенде. Температурное поле диска при нагреве (запуске) в различные моменты времени представлено на рис. 80, при охлаж -дении — на рис. 81. Здесь сплошными линиями показаны значения температуры со стороны лопаток, пунктирными — с обратной стороны диска. С целью приближения к реальным условиям работы, когда охлаждение диска может быть более интенсивным (например, зимой) на стенде было исследовано, распределение температур при охлаждении, сопровождаемом впрыском воды в газовый тракт. Соответствующие температурные поля показаны на рис. 82. В этом случае наблюдались значительные обратные (по отношению к тем, которые имели место при запуске) температурные перепады по радиусу. Специальные испытания подтвердили, что тепловые режимы, осуществляющиеся на стенде, близки к реальным.  [c.170]

Подшипники из полиамидов [13, 21, 22, 24, 26, 27, 30, 31, 33, 34, 35, 38, 39, 40, 53, 55]. Полиамиды под воздействием механической нагрузки и тепловых полей проявляют значительную склонность к ползучести. Ползучесть является результатом фазовых превращении надмолекулярных структур полиамидов под воздействием силовых и тепловых факторов. Искажения надмолекулярных структур можно ограничивать термической обработкой в различных средах, близких к температурам фазового перехода полиамида. Термическая обработка улучшает качество полиамидных деталей. Она проводится в масле или в среде инертных газов (иначе может иметь место химическая деструкция материала) де-  [c.240]

В то же время для вычисления критерия Re нужно брать какую-то величину скорости, которая в различных местах рассматриваемого потока может быть различной. Обычно принимают максимальное значение скорости. Различие физических свойств потока газа, ввиду неравномерного поля температур, а также влияние направления теплового потока учитывается введением  [c.273]

На рис. 5.11 теоретически рассчитанные поля температур теплоносителя для числа Ке = 3,5 10 при различных значениях коэффициента К для моментов времени т = 16,8, 20,8, 24,8, 32,8, 44,8, 72,8 с сравниваются с экспериментально измеренными распределениями температур в диапазоне изменения радиальной координаты г/г < 0,5. Именно в этой области течения наблюдаются максимальные изменения температуры теплоносителя во времени, обусловленные резким увеличением тепловой мощности, подводимой к трубам нагреваемой части пучка. Наблюдаемый на рис. 5.11 характер изменения температуры теплоносителя во времени является типичным для всех режимов работы теплообменника, рассмотренных в данном разделе.  [c.159]

Аналитические методы позволяют получить функциональные зависимости для распределения температуры и проанализировать влияние различных факторов на температурное поле тела, в частности, в замкнутом виде решить некоторые задачи оптимизации параметров термоизоляции. Численные методы дают значения температуры в некоторых заданных точках тела в фиксированные моменты времени. К ним также следует отнести и методы моделирования температурных полей, основанные на математической аналогии кондуктивных процессов с некоторыми другими физическими явлениями (например, с процессами распространения зарядов в электрических цепях [19]). В этом случае решение задачи получается в результате пересчета числовых значений экспериментально измеренных физических величин, соответствующих температуре или тепловому потоку.  [c.42]

Для определения температуры металла отдельных элементов промежуточного перегревателя производят тепловые расчеты, учитывающие многочисленные факторы тепловосприятие поверхности нагрева (с различной степенью загрязнения) при передаче тепла излучением и конвекцией с учетом теплового сопротивления на внутренней стенке трубы неравномерность полей скоростей и температур в газовом и паровом трактах, нагрузка агрегата и т. д. Методика выполнения этих расчетов в СССР, как известно, регламентирована нормативным методом теплового расчета котельных агрегатов. Этого метода придерживаются котельные заводы, конструкторские и проектные бюро, наладочные, исследовательские и другие организации, связанные с созданием, освоением и эксплуатацией котельных агрегатов. При этом обеспечиваются более или менее единообразный подход к расчету и возможность достаточно обоснованного сопоставления различных вариантов и подсчетов.  [c.127]

Рассмотрим пример постановки задачи нестационарного тепло-переноса. Пусть дан длинный стальной трубопровод, покрытый слоем теплоизоляции, который предназначен для транспортировки теплоносителя. Трубопровод подключен в общую сеть. Необходимо определить нестационарный тепловой режим трубопровода в период пуска теплоносителя. Исходя из поставленной практической задачи, формулируем физическую модель процесса (рис. 1 -5). Дан двухслойный полый цилиндр бесконечной длины с внутренним радиусом ri и наружным Гз. Материалы слоев стенки цилиндра различны и имеют следующие теплофизические и конструктивные параметры первый слой —Xi, Си pi, ai, 6i( i, Гг) второй слой — Хг, С2, р2, 02. 62, (Г2, з). При этом коэффициенты теплопроводности и теплоемкости материала слоев меняются с температурой по линейному закону, а плотность остается при нагревании постоянной. Начальная температура обоих слоев одинакова, постоянна и равна Гн- В начальный момент времени внутренняя поверхность цилиндра подвергается воздействию горячей среды с тем-  [c.30]


Поскольку задача по определению температурного поля рассматривается в общей постановке и отдельные слои многослойной стенки однотипны, то для получения всех основных расчетных соотнощений вполне достаточно рассмотреть двухслойную стенку, состоящую из слоя теплоизоляции (слоя А) и основного несущего м.атериала (слой Е). Теплофизические и конструктивные параметры слоев А п Е снабжаем соответствующими индексами (рис. 2-20). Между слоями имеется надежный тепловой контакт, не изменяющийся в процессе нагревания. Слой А нагревается средой с температурой Гг, а слой Е охлаждается средой с температурой Гв. Интенсивность теплообмена такой стенки со средами различна, Температурное поле в двух-  [c.76]

Задача по определению нестационарного пространственного температурного поля в различных твердых телах относится к числу сложных в связи с тем,что известный математический аппарат не дает возможности получить решение уравнения теплопроводности при произвольных начальных и несимметричных граничных условиях третьего рода. В практике обычно задача усложняется тем, что и температура окружающей среды, и коэффициенты теплоотдачи между средой и телом в процессе передачи тепла изменяются, причем эти изменения зачастую происходят по сложным закономерностям. Кроме того, теплофизические параметры теплопроводящей среды также изменяются в процессе теплового воздействия, а среда является анизотропной.  [c.296]

Из анализа результатов, видно, что поле температуры становится почти полностью периодическим к пятому циклу. В периодическом распределении температуры может быть заметен эффект тепловой инерции грунта. При ITER = 99 температура поверхности почвы Т(2, 14) достаточно велика, но в глубине можно обнаружить значения температур меньше 50. Это может быть уподоблено памяти о предыдущей зиме, сохраненной грунтом. Точно так же в первый зимний месяц (соответствующий ITER = 111), несмотря на то что температура Т(2,14) низкая, в глубине можно обнаружить значения выше 50. Это показывает, что, хотя температура в каждой точке меняется во времени периодически, тепловая инерция создает сдвиг по фазе между колебаниями температуры в различных точках.  [c.165]

Поля температур в чистых условиях замерялись при различном направлении теплового потока. При наличии нерастворен-ных примесей замеры проводились, когда тепловой поток был на-  [c.18]

Так как температуры в различных областях нагретой зоны в общем случае неодинаковы, то тепловой коэффициент Рдолжен зависеть от положения точки наблюдения /, т. е. Руф = Руф (х, у, г). Анализ процессов тепло-oб ieнa в таких аппаратах изложен в гл. 5. Здесь рассматривается только приближенный коэффициентный метод расчета поля температур нагретой зоны для случая равномерного распределения мощности источников энергии по ее объему.  [c.218]

В наиболее сложных условиях по тепловой напряженности паходятся огневые днища головки блока цилиндров и поршня, температурные поля которых характеризуются значительной неравномерностью в различных зонах. Температура поверхности этих деталей и особенно поршня существенно влияет па условия эксплуатации двигателя и его надежность. Перегрев поршня, если при этом недостаточно хорошо смазываются сопряженные детали, вызывает закоксовыванпе колец, задиры рабочей новерхности поршня и гильзы и другие дефекты. Вследствие неравномерного поля температур в днище поршня и головке они деформируются, а степень тепловой напряженности их в зонах с разными температурами неодинакова, в результате чего возникают трещины и прогар в отдельных местах.  [c.230]

Теплоизолирующие свойства напыленных на уран окиси алюминия и окиси циркония исследовались на приборах для измерения контактного термического сопротивления. Принцип измерения основан на определении поля температур в наборе деталей, пронизываемых постоянным тепловым потоком. Устройство для измерения содержит источник тепла — электронаггева-тельный элемент, набор прослоек — эталонов из материалов с известными теплопроводящими свойствами, образцы материалов, между которыми определяется коэффициент теплопередачи, и, наконец, источник холо да — водоохлаждаемый контакт. Изменение температуры по длине набора образцов регистрируется с помощью термопар. Боковые утечки исключаются необ .о ДИМОЙ тепловой защитой, а также тем, что измеряемые образцы размещаются в вакуумируемой камере. Использованная установка позволяла изменять следующие параметры температуру в месте контакта образцов до 600° С, тепловой поток до 25 вт1см , давление в контакте между образцами, а также определять влияние окружающей образцы атмосферы (вакуум, различные газы).  [c.65]

В результате испытаний устанавливается стойкость материала к тепловым воздействиям, причем она в различных случаях может быть неодинаковой например, материал, выдерживающий кратковременный нагрев до некоторой температуры, может оказаться неустойчивым по отношению к тепловому старению при длительном воздействии даже более низкой температуры и т. п. Как указывалось, испычанип на действие повышенной температуры иногда проводятся при одновременном воздействии повышенной влажности воздуха (тропические условия) или электрического поля.  [c.84]

При определении этим методом нестационарных значений коэффициента точность измерений температур может быть различной. Та[к при резком увеличении тепловой нагрузки для первых мгновений расслоение теоретических крирых Т = = Т г. К) при различных К может быть небольшим и сравнимым с погрешностью измерения температуры. Поэтому для определения коэффициента с допустимой точностью 25. ... .. 50% необходимо принимать в расчет опытные данные только для тех моментов времени, где расслоение теоретических полей температур существенно больше погрешности измерения температуры теплоносителя.  [c.58]

При проектировании и размещении энергетических предприятий необходимо оценивать тепловую нагрузку на водоемы, используемые в качестве источников и приемников охлаждающей воды. Теоретическая оценка распространения теплых сбросных вод электростанций должна учитывать физические процессы теплопередачи в большом объеме воды, а также многообразие внешних факторов, влияющих на эти процессы. Для прогнозирования распространения тепла в районе сброса охлаждающей воды конденсаторов турбин применяют математические модели поверхностных струйных потоков. Рассматривают наиболее типичные условия сброса теплых вод поверхностный сброс в глубокий водоем, сброс в мелководную зону, вдольбереговой сброс. Выпускным устройством служит поверхностный сбросной канал прямоугольного сечения с геометрическим соотношением ho/bo l. При расчете распространения тепловых потоков определяют глубину проникновения и площадь распространения теплых вод, поля температур и скоростей течения потока, площади зон с различной степенью перегрева. В математических моделях учитывают теплоотдачу со свободной поверхности, скорость и направление течений, а также влияние дна и береговой линии.  [c.157]

Двухмерная задача распределения температур в шиповом экране впервые решалась в [Л. 30, 31]. В предложенном авторами решении использованы функции Бесселя действительного аргумента. Анализ сделанного авторами решения будет дан ниже. Здесь следует отметить, что авторы смогли сделать полезные выводы относительно особенностей работы шипа и набивки и дали общую, хотя и сложную, схему расчета ошипованных экранных поверхностей различных конструкций. Однако в основу решения было положено чисто умозрительное представление температурного поля, как имеющего на некоторой определенной высоте так называемую плоскую изотермическую поверхность, от которой строится дальнейший расчет. Результаты машинного решения, проведеяного во ВТИ, с учетом контактного сопротивления материалов металл — керамика , а также опытные данные (см. 4-5 и 4-6) показали недостаточную обоснованность такого упрощения даже при постоянной толщине шлакового покрытия. Приведенные выше выводы о жестком соотношении плотностей теплового потока по контактным поверхностям материалов в особых точках также показывают, что картина температурных полей в такой конструкции как ошипованный и футерованный экран значительно сложнее.  [c.109]



Смотреть страницы где упоминается термин Тепловая Поле температур в различных : [c.354]    [c.83]    [c.768]    [c.227]    [c.46]    [c.81]    [c.256]    [c.842]    [c.187]    [c.211]    [c.40]    [c.259]    [c.352]    [c.164]    [c.240]    [c.109]   
Автомобильные двигатели Издание 2 (1977) -- [ c.0 ]



ПОИСК



Тепловые поля



© 2025 Mash-xxl.info Реклама на сайте