Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел прочности алюминиевых сплаве стали

Влияние скорости деформации на характеристики прочности алюминиевых сплавов значительно меньше, чем у армко-железа и малоуглеродистых сталей. Характер изменения прочностных характеристик в общем такой же, как и у сталей более интенсивное возрастание со скоростью деформации сопротивления в области малых деформаций и более слабая зависимость от скорости деформации предела прочности достаточно резкое изменение в зависимости деформации прочностных характеристик от скорости в области скоростей е 10 с" (см> рис. 51).  [c.126]


НВ. Эти зависимости широко используются в производстве при контроле деталей и полуфабрикатов (рис. 3). Однозначной связи между твердостью по Бринелю и пределом прочности алюминиевых, титановых и магниевых сплавов, а также многих марок сталей не установлено (рйс. 4). Большое значение для оценки возможности использования. зависимостей типа а =кНВ играет статистическая обработка результатов испытаний на прочность и твердость. Цилиндрические образцы с удлиненными головками, имеющими две параллельные лыски, сначала испытывают на твердость в головках, а затем разрывают.  [c.59]

При наличии надрезов различие в пределе выносливости алюминиевых сплавов сильно сокращается (табл. 188), причем чем выше прочность сплавов, тем больше их чувствительность к концентрации напряжений. Такое явление считается характерным и для других металлов, в частности для стали.  [c.419]

Испытания на усталость соединений листовых конструкций. Полученных контактной точечной сваркой из сплавов ВТ1-0 и ОТ4-1, сталей и алюминиевых сплавов, показали близость предела выносливости стали и титановых сплавов [162]. По данным этой работы, уровень усталостной прочности сварных соединений определяется их конструктивным оформлением, при этом вид материала имеет меньшее значение.  [c.157]

Для цилиндрических образцов (рис. 133,в) требуются резьбовые головки достаточно большого диаметра. Для образцов из высокопрочной стали и титана рекомендуется головка, диаметр которой составляет около трех рабочих диаметров для сталей средней прочности и алюминиевых сплавов эта величина равна 2,2-4-2,5. При правильном выборе формы и размеров образцов коэффициент концентрации напряжений для случая работы материала в пределах упругости не превышает 1,025—1,05 [127].  [c.240]

Разрушение материалов в результате действия повторно приложенных напряжений и коррозионной среды называют коррозионно-усталостным разрушением. Существует мнение [98], что коррозионную усталость не следует рассматривать как процесс, существенно отличающийся от собственно усталости, поскольку для многих материалов даже обычная атмосфера является в известном смысле коррозионной средой. В первую очередь это относится к тем материалам и тем условиям нагружения, для которых не существует физического предела усталости, например к алюминиевым сплавам при комнатной температуре или прочим материалам при повышенных температурах. На усталостную прочность сталей и других материалов водопроводная и дистиллированная вода, атмосферный воздух оказывают заметное влияние.  [c.127]


Композиционные материалы, кроме повышенной вязкости разрушения, отличаются высоким сопротивлением усталостному разрушению. Предел выносливости сталей, алюминиевых и титановых сплавов составляет 0,3—0,5 от предела прочности, тогда как это отношение для композиционных материалов на основе алюминиевых и титановых сплавов и для никелевых эвтектических композиций составляет 0,6—0,75.  [c.26]

Алюминий — стальная проволока. Технология изготовления композиционного материала алюминий — стальная проволока описана в работе [179]. Материал получали прессованием пакета, состоящего из чередующихся слоев фольги алюминиевого сплава 2024 и проволоки диаметром 0,2 мм из коррозионно-стойкой стали 355 по следующему режиму температура 480—495 С, давление 1000 кгс/см и выдержка- в этих условиях 20 мин. Таким образом изготовляли листы шириной 0,3 м, длиной до 2,4 м и толщиной от 1 до 35 мм. При прочности проволоки 337— 365 кгс/мм предел прочности композиционного материала после дополнительной прокатки с небольшой степенью обжатия составлял 121 —124 кгс/мм .  [c.136]

Композиционный материал на основе алюминиевого сплава 6061 с 47 об. % волокна борсик и 6 об. % проволоки из коррозионно-стойкой стали AF -77, уложенной перпендикулярно борному волокну получали методом диффузионной сварки под давлением в вакууме при температуре 500° С, давлении 700 кгс/см в течение 1 ч [109] предел прочности такого материала в поперечном направлении был равен 29 кгс/мм . Аналогичный материал на основе сплава 6061 с 50 сб.% волокна борсик и 5 об. % проволоки из коррозионно-стойкой стали 355 диаметром 0,05 мм, также уложенной в поперечном направлении, получали 1177] методом диффузионной сварки в автоклаве. При этом применяли следующий режим пагрев до температуры 482°С при давлении 3,5 кгс/см" и выдержку в этих условиях 30—50 мни, повышение давления до 210 кгс/см , затем повышение температуры до 524—530° С, отключение нагрева и охлаждение материала в автоклаве до 200° С. Предел прочности такого материала в направлении укладки борного волокна был равен 120 кгс/мм , а в поперечном направле-138  [c.138]

В зависимости от предела прочности представлены на фиг. 51 для стали и на фиг, 62 для алюминиевых сплавов.  [c.465]

Ванадиевый ангидрид и ванадаты используются в качестве катализаторов при получении серной кислоты. Добавки ванадия к стали повышают ее предел упругости, износостойкость, прочность. Ванадиевые стали широко используются в авто- и авиастроении, некоторых других отраслях машиностроения, в производстве режущего инструмента. Большую техническую ценность имеют и другие сплавы, содержащие ванадий (алюминиевые сплавы, ванадиевые бронзы).  [c.380]

Коэффициенты р, характеризующие понижение предела выносливости от воздействия коррозии до испытания, в зависимости от предела прочности авр представлены на фиг. 64 для стали и на фиг. 65 для алюминиевых сплавов.  [c.514]

Характер изменения концентрации напряжений в зависимости от соотношения размеров концентратора и детали показан на рис. 3.35. С увеличением коэффициента концентрации напряжений для большинства сталей и алюминиевых сплавов резко снижается предел усталостной прочности.  [c.129]

В работе [86] была исследована циклическая прочность двух типов сварных листовых соединений аргонодуговая сварка встык с присадкой и контактная шовная сварка встык с двусторонними накладками. Испытание образцов велось плоским симметричным изгибом. Разрушение образцов происходило по месту сплавления металла шва с основным металлом, т. е. по месту конструктивного концентратора напряжений. Для того чтобы оценить раздельно роль внешних концентраторов и роль самой сварки ( внутренний концентратор) на усталостную прочность сварных соединений титана, были определены пределы выносливости образцов без усиления и накладок, которые перед циклическим нагружением срезались. В этих испытаниях определено снижение циклической прочности только в результате действия структурных или внутренних концентраторов. Как видно из рис. 69, на котором представлены основные результаты работы, предел выносливости таких образцов оказался еш,е более низким, чем у образцов с усилением эффективный коэффициент внутренней концентрации для аргонодуговой и контактной сварки оказался соответственно 1,74 и 3,25. Все образцы этих серий разрушались по шву. Сопоставление усталостной прочности сварных соединений титана с подобными соединениями других металлов (стали, алюминиевые сплавы) показало, что они имеют близкие значения отношений предела усталости сварного соединения и основного металла. Эксперименты показали, что пределы усталости стыковых соединений титановых листов при изгибе, выполненных ручной аргонодуговой сваркой и контактной сваркой, составляют соответственно 77 и 65% от усталостной прочности основного металла причем снижение предела выносливости идет в основном за счет внутренних структурных дефектов сварного шва.  [c.150]


Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]

Если при рабочем давлении скорость потока кислорода превышает допустимые пределы, применяют трубы из меди или латуни. Все надземные кислородопроводы давлением 6,4 МПа и выше изготовляются только из медных или латунных труб. Для изготовления труб для транспортировки жидкого кислорода применяют медь, алюминиевые сплавы и коррозионно-стойкую сталь, сохраняющие прочность и вязкость при криогенных температурах.  [c.214]

Исследования цветных металлов и их сплавов показали, что пределы прочности и упругости, твердость и пластичность никеля, меди и алюминия плавно возрастают при снижении температуры до —180° С. Ударная вязкость медных и алюминиевых сплавов с понижением температуры почти не изменяется. Пластичность сварных швов меди и латуни при снижении температуры улучшается, что выгодно отличает эти металлы от стали.  [c.235]

В. С. Борисов и С. А. Вишенков [387] нашли, что химическое никелирование без термообработки не влияет на усталостную прочность стали. Термообработанные никель-фосфорные покрытия, осажденные из кислых растворов, значительно снижают усталостную прочность (на 41—42%). При толщине 35 мк никелевое покрытие снижает усталостную прочность стали в такой же мере, как и хромовое покрытие толщиной 200 мк. Осадки, полученные из щелочных растворов, в меньшей степени снижают усталостную прочность, чем осажденные из кислых растворов. При толщине покрытия 35 мк снижение усталостной прочности стали ЗОХГСА составило 16,5%, что сравнимо со снижением предела усталости для стали с хромовыми покрытиями такой же толщины. С увеличением толщины никелевого покрытия усталостная прочность стали снижается. Усталостная прочность алюминиевого сплава Д1Т после химического никелирования не изменилась, а чистого алюминия возросла на 38% (при толшине покрытия 30 мк).  [c.113]

Первые крупные иоследования в области термообработки цветных сплавов были выполнены в начале XX в. В 1900 г. А. А. Байков (1870—1946 гг.) на сплавах меди с сурьмой доказал, что способность к закалке присуща не только сталям, как это ранее считали, но и цветным сплавам. В 1903 г. в Германии был взят патент на способ облагораживания алюминиевых сплавов нагреванием и закалкой было показано, что предел прочности литых сплавов алюминия с медью в результате закалки возрастает в 1,5 раза.  [c.11]

Предел текучести конструкционных легированных сталей при закалке и низком отпуске может быть доведен до 150 kzJmm , а для сталей с повышенным содержанием углерода и пружинных сталей он возрастает до 180 KzjMj и выше. Предел текучести алюминиевых сплавов может быть доведен при помощи термообработки до 50 кг мм . Отношение пределов текучести и прочрюсти высокопроч-.чых сталей и алюминиевых сплавов примерно равно отношению их удельных весов (7,8 2,7 3). По пределу текучести и пределу прочности, отнесенными к единице веса, стали и алюминиевые спл я-вы близки между собой.  [c.24]

Так как модуль упругости сплавов определяется модулем упругости основного компонента я мало зависит от содержания (в обычных количествах) легирующих элементов (например, для сталей колебания заключены в пределах = (19 -г 22) 10 кгс/мм , для сплавов А1 в пределах = (7 н- 7,5) 10 кгс/мм , то в случае деталей одинаковой конфигурации, когда на первом плане стоят требования жесткости, а уровень напряжений невысок, целе-сообразно применять наиболее дешевые материалы (углеродистые стали вместо легированных, алюминиевые сплавы простого состава вместо сложнолегированных). Если же наряду с жесткостью имеет значение прочность, то предпочтительны прочные сплавы.  [c.211]


При длительном режиме работы с постоянной или мало-меняющейся нагрузкой определение допускаемых изгибных напряжений при симметричном цикле производится по формуле [а/г]=а ]/ц при отнулевом цикле [з/ ] = 1,5а 1//г, где п = = 1,3. .. 2—коэффициент запаса прочности. Предел выносливости можно определять по формулам а ] = 0,430 — для углеродистых сталей а 1 = 0,350 + (70... 120) МПа — для легированных сталей а 1 = 85. . . 105 МПа — для бронз и латуней а [ = (0,2. . . 0,4) — для деформируемых алюминиевых сплавов для пласт-  [c.217]

В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]

Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале.  [c.356]

Немагнитная сталь. Изготовляют путем введения в состав стали никеля и марганца, способствующих понижению температуры перехода v-железа в а-железо до 20 С и ниже. В виде примера немагнитной стали можно указать никелевую сталь, и.мею-щую состав 0,25—0,35 % С, 22—25 % N4, 2—3 % Сг, остальное Fe. Предел прочности при изгибе для такой стали 700—S00 МПа, магнитная проницаемость = 1,05- -1,2. Немагнитная сталь ввиду ее высоких механических с13ойств может применяться для изготовления детален, которые ранее выполнялись из сплавов меди и алюминиевых сплавов и не обладали достаточно высокими механическилн свойствами.  [c.291]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

Если сопоставить характеристики этих сплавов и легированной стали 40ХНМА, имеющей предел прочности при растяжении, равный 100 nejMMP-, и удельный вес около 7,8 то окажется, что детали одинаковой прочности из алюминиевых сплавов легче. Конечно, это справедливо далеко не при всех условиях. Известно, в частности, что алюминиевые сплавы быстро теряют прочность при повышении температуры, а это создает ряд трудностей в применении их для деталей, работающих длительное время при высоких температурах.  [c.157]


Из-за большой разницы коэффициентов теплового расширения алюминиевых сплавов и стали или чугуна монометаллические вкладыши из алюминиевого сплава, установленные в стальной или чугунный корпус (наиболее распространенная конструкция подшипника), при рабочих температурах могут иметь высокие внутренние напряжения сжатия, тем большие, чем выше температура (см. табл. 77—78). При некоторой критической температуре внутренние напряжения могут достигать предела текучести материала (при условиях, зависящих от посадки, геометрических размеров, прочности сплава и разницы в коэффициентах теплового расширения корпуса и вкладыша) и вкладыши начнут деформироваться пластически. Вследствие этого при последующем охлаждении вкладышей внутренний диаметр их уменьшается против начального, что приводит к опасному уменьшению или исчезновению зазора между валом и вкладышами. Величина критической температуры, как показали расчеты и экспериментальная прогерка, обратно пропорциональна пределу текучести материала, что и привело к распространению наиболее прочных алюминиевых сплавов в начальный период промышленного применения алюминиевых антифрикционных сплавов.  [c.113]

Термопрен (ТУ 38-6-78—70) — продукт обработки натурального каучука. Поставляется в виде твердых листов от темно-коричневого до черного цвета, толщиной до 6 мм, Д.ля образования клея растворяют (при 15—20° С) в бензине галоша или авиационном (марки Б-70 и Б-78) в соотношении 1 2 по массе. Предназначен для приклеивания невулканизированных и вулканизированных резин на основе натурального и натрий-бутадиенового каучуков к стали, алюминиевым сплавам, латуни с последующей ву.лканизацией. Предел прочности клеевого соединения при отрыве не менее 5 кгс/см .  [c.293]

Стеклокерамика обладает свойствами, во многом схожими с литым стеклом. Наряду с низкой плотностью, высоким сопротивлением коррозии в морской воде она имеет высокие прочностные характеристики (предел прочности 21 000 кПсм ), которые не падают с погружением, а наоборот, как у стекла увеличиваются с повышением давления до определенного предела. По мнению фирмы orning удельная прочность стеклокерамики марки Ругосегат значительно выше, чем у стали и алюминиевых сплавов, применяемых в настоящее время для глубоководных корпусов [83].  [c.353]

Технический титан, содержащий около 0,25% примесей, имеет предел прочности а р = 40ч-70 кПим . По удельной прочности (отношение предела прочности к удельному весу) при температуре 200—300° С технический титан превосходит как нелегированную сталь, так и магниевые и алюминиевые сплавы.  [c.303]

Весовые характеристики. В большинстве своем пластмассы отличаются сравнительно низкой плотностью, колеблющейся в пределах 1,05—2,1 г/см (в среднем 1,4—1,5 г/см ). К числу наиболее легких монолитных (физически однородных) пластиков относятся полиизобутилен, полипропилен и полистирол, плотность которых соответственно равна 0,90 0,95 и 1,05 г/с.ч . Плотность газонаполненных пластмасс лежит в пределах 0,02 (мипора) — 0,85 (наполненные микропористые резины) г/см . Введение в исходные композиции большого количества минеральных наполнителей приводит к значительному утяжелению пластмассо вых изделий их плотность может достигать 3,0—4,0 г/см . Большинство пластмассовых изделий примерно вдвое легче тех же изделий, выполненных из алюминиевых сплавов (дуралюмии и др.), и в 5 раз легче тех же изделий из чугуна или стали. Это обстоятельство, в сочетании с относительно высокими прочностными характеристиками, позволяет пластмассам в ряде случаев успешно конкурировать с металлами. О целесообразности применения пластмассы вместо другого материала можно судить на основании сопоставления значения их удельной прочности  [c.375]

При дуговой сварке низкоуглеродистых, многих низколегированных сталей, за исключением термообработанных, ряда высоколегированных и некоторых алюминиевых и титановых сплавов получают сварные соединения, прочность которых равна прочности основного металла при статических нагрузках. Труднее получить сварные соединения высокого качества высокопрочных сталей мартенситного класса, в частности ВКС-1, ВЛ1Д, СП-43 и многих других, с пределами прочности до 200 кГ1мм , а также термически упрочненных алюминиевых сплавов.  [c.132]

Таким образом, проведенные исследования показали, что при внедрении детали из стали Х18Н9Т в алюминиевые сплавы АД1 и АМгЗ при температуре 400° С пластическая деформация стали на глубину порядка 500 А в первом случае и 10 ООО А во втором случае обеспечивает схватывание металлов по всей поверхности контакта с образованием соединения, равнопрочного алюминиевому сплаву (разрушение сварных соединений происходит по основному материалу с меньшим пределом прочности). При снижении температуры или изменении других параметров процесса сварки прочность соединения уменьшается. Анализ дислокационной структуры поверхностного слоя показал, что декорирование наблюдается не только в макроскопическом масштабе, но и в микроскопическом на отдельных единичных дислокациях (рис, 3). При этом на электронно-микрогжопических картинах наблюдаются мельчайшие клубки второй фазы, которые светятся при темнопольном изображении и декорируют дислокацию лишь с одного конца, а именно с того, который выходит на свободную контактную поверхность раздела материалов. Второй же конец дислокаций, выходящий на другую поверхность, образовавтнуюся в результате приготовления пленки и утонения образна, не декорирован фазой.  [c.102]

Н — высота гайки и — пределы прочности материалов соответственно болта и гайки на срез [для сталей и титановых сплавов Тв = (0,6. .. 0,7) Ов, для алюминиевых и магниевых сплавов Тв = (0,7. .. 0,8) Ов1 кт — коэффициент, учитывающий характер изменения деформаций витков по высоте гайки при наличии в резьбе пластических деформаций (нагрузки кежду витками в момент, предшествующий разрушению, распределены равномерно) и особенности разрушения резьбы соединен ния. Теоретически кт — 1 лишь для соединений с равномерным распределением нагрузки между витками, разрушаемых в результате чистого среза. На практике такой случай реализовать невозможно и всегда кт <  [c.159]

В биметаллическом прокате из углеродистой и низколегированной стали и алюминиевых сплавов АМгЗ и АМгб соотношение толщин в пакете 1 1 и 1,5 1. Алюминиевый сплав соединяется со сталью при прокате по подслою из чистого алюминия. Предел прочности биметалла на срез 70. .. 90 МПа и разрыв 100. .. 150 МПа.  [c.512]

Оценка сопротивления машин и конструкций хрупкому разрушению, базирующаяся на силовых и энергетических критериях линейной механики разрушения, оказалась возможной для несущих элементов, изготавливаемых из материалов повышенной прочности и низкой пластичности (низколегированные высокопрочные закаленные и низкоотпущенные стали для авиационных и ракетных конструкций, упрочненные алюминиевые и титановые сплавы для авиационных, судовых и энергетических конструкций). В этом случае номинальные разрушающие напряжения в ослабленных сечениях не превышают предела текучести конструкционного материала, который обычно составляет 0,90-0,95 предела прочности.  [c.69]

Рис. 7.17. Влияние состава материала на кривую усталости. Отметим, что сплавы на основе железа и титана имеют ярко выраженный предел усталости, а другие сплавы — нет. (Данные из работ [6] и [21].) J — сталь Т-1 2 — титан Ti 150а 3 — сталь 1020 —алюминий 2024-Т4 5 — усталостная прочность Ss-io для алюминиевого сплава 2024-Т4. Рис. 7.17. Влияние состава материала на <a href="/info/23942">кривую усталости</a>. Отметим, что сплавы на <a href="/info/498176">основе железа</a> и титана имеют ярко выраженный <a href="/info/6767">предел усталости</a>, а <a href="/info/473489">другие сплавы</a> — нет. (Данные из работ [6] и [21].) J — сталь Т-1 2 — титан Ti 150а 3 — сталь 1020 —алюминий 2024-Т4 5 — <a href="/info/6769">усталостная прочность</a> Ss-io для алюминиевого сплава 2024-Т4.
Рис. 11.9. Соотношения между пределом прочности и пластичностью разрушения для различных типов сплавов. (Из работы [2], ASTM перепечатано с разрешения.) По оси абсцисс — истинная пластичность разрушения по оси ординат — истинный предел прочности, кфунт/дюйм 1 — обработка Х-аусформинг Н-11 2—18% Ni мартенситностареющая сталь 3 — стали 4 — никелевые сплавы 5 — титановые сплавы 6 — алюминиевые сплавы. Рис. 11.9. Соотношения между <a href="/info/1682">пределом прочности</a> и <a href="/info/47988">пластичностью разрушения</a> для различных <a href="/info/610861">типов сплавов</a>. (Из работы [2], ASTM перепечатано с разрешения.) По оси абсцисс — истинная <a href="/info/47988">пластичность разрушения</a> по оси ординат — <a href="/info/113245">истинный предел прочности</a>, кфунт/дюйм 1 — обработка Х-аусформинг Н-11 2—18% Ni мартенситностареющая сталь 3 — стали 4 — <a href="/info/48390">никелевые сплавы</a> 5 — <a href="/info/29902">титановые сплавы</a> 6 — алюминиевые сплавы.

Для сталей 22К и 45, также являющихся циклически стабильными, интенсивность увеличения истинных деформаций и напряжений в области квазистатического типа разрушения не столь велика, как у стали Х18Н9Т. Это определяется прежде всего исходной пластичностью материала. Причем не только величиной относительного сужения ф, значения которого отличаются для данных сталей сравнительно мало, но и склонностью к упрочнению, характеризуемой разницей между пределом прочности Оь и пределом текучести а,,5. Для стали Х18Н9Т эта разность, отнесенная к а , равна 0,6, в то время как для стали 22 К и стали 45 соответственно 0,46 и 0,55. Для алюминиевого сплава АД-33 указанная разница составляет всего лишь 0,25. Вместе с тем АД-33 является материалом упрочняющимся, хотя интенсивность упрочнения по числу циклов, как было показано выше, невелика.  [c.174]


Смотреть страницы где упоминается термин Предел прочности алюминиевых сплаве стали : [c.553]    [c.553]    [c.322]    [c.112]    [c.87]    [c.31]    [c.191]    [c.183]    [c.322]    [c.50]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.429 , c.430 , c.432 , c.433 ]



ПОИСК



Алюминиевые предел прочности

Алюминиевые прочность

Предел прочности

Предел прочности алюминиевых сплавов

Предел прочности алюминиевых сплавов стали жаропрочной

Предел прочности алюминиевых сплавов стали конструкционной

Предел прочности алюминиевых сплавов стали легированной

Предел прочности алюминиевых сплавов стали углеродистой

Предел прочности алюминиевых сплавов стали — Изменение с температурой

Предел стали

Прочность алюминиевых сплавов

Прочность стали

Сплавы Предел прочности

Стали и сплавы



© 2025 Mash-xxl.info Реклама на сайте