Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращение жидкости в потоке

Экспериментальное исследование структуры потока в криволинейных трубах показывает, что под воздействием массовых сил в поперечном сечении потока возникают вторичные течения в форме парного вихря (рис. 8.7). Направление вращения жидкости в замкнутых контурах определяется направлением действия массовых сил благодаря наибольшей скорости осевого движения потока в центральной части трубы здесь возникает наибольшая центробежная сила, которая заставляет перемещаться частицы жидкости от оси изгиба трубы к периферии. При этом вблизи стенок, лежащих в плоскости изгиба, возникают обратные токи (к оси изгиба).  [c.350]


На основании изложенного выше перепад давлений поперек потока в муфтах с тором и радиальными лопатками, обусловленный вращением жидкости в меридиональном сечении проточной части, может быть вычислен по среднему значению меридиональной скорости. Первые два члена уравнения (13)  [c.68]

Течение в турбомашинах происходит между концентрическими поверхностями вращения. Если жидкость течет между поверхностями вращения и в потоке не расположены какие-либо тела, то поверхности тока также будут поверхностями вращения. Если же в потоке расположены обтекаемые тела, например, кольцевая аэродинамическая решетка, то в общем случае течение не будет строго осесимметричным.  [c.249]

Указанное распределение скоростей можно представить как сумму скоростей двух потоков (рис. 96, а) потока с равномерным по сечению канала распределением скоростей (рис. 96, б), свойственным течению через неподвижные каналы, и вихревого потока с вращением жидкости в сторону, противоположную вращению насосного колеса (рис. 96, в).  [c.163]

Основным рабочим элементом центробежного насоса (рнс. 73) является лопастное колесо 1, которое свободно вращается в корпусе 2. При вращении колеса в потоке жидкости возникает разность давлений по обе стороны лопасти. Силы давления лопастей на поток создают вращательное движение жидкости, а под действием центробежных сил создается поступательное движение жидкости и увеличивается ее давление и скорость. Лопастное колесо закреплено на валу 3, который служит проводником механической энергии двигателя. В месте прохода вала через отверстие в корпусе насоса устраивают сальниковое уплотнение 4, предупреждающее вытекание жидкости из корпуса.  [c.185]

Произвольность в выборе п связана с тем, что в цилиндрических или кольцевых сосудах наблюдаются течения, сформированные из зонального потока (систематическое относительное вращение жидкости в одном направлении) и волнообразной моды с безразмерным волновым числом п ), значение которого зависит от условий эксперимента. Процедура Галеркина приводит к следующей системе уравнений относительно коэффициентов  [c.24]

При вращении жидкости в зазоре возникает движение ее в меридиональной плоскости. Под действием центробежных сил слои жидкости, прилегающие к колесу, перемещаются к большему радиусу. Под воздействием повышенного давления на выходе из колеса, вдоль стенки корпуса начинается движение от периферии к оси. Примерная эпюра меридиональных скоростей движения жидкости в осевом зазоре при малых утечках представлена на рис. 3.21, а линия тока дана на рис. 2.69. На распределение скоростей в зазоре влияет окружная скорость потока на периферии осевого зазора и утечки через уплотнения.  [c.157]


При М > О момент действия потока на стенки направлен в сторону вращения канала (турбина), при М <0 — против вращения (насос). Уравнение Бернулли для относительного движения жидкости в рассматриваемом случае имеет вид  [c.383]

Исходя из схемы бесконечного числа лопастей определить момент М действия потока на колесо и напор Н (энергию, сообщаемую единице веса потока жидкости в колесе) при частоте вращения п — 2135 об/мин и расходе воды Q = 240 л/с.  [c.403]

Способ контакта газа и жидкости в данном случае осуществляется следующим образом (см. рис. 10.3, б). Газовый поток G ) закручивают и подают в него жидкость Г()> > Де происходит первая стадия контактирования (зона А) между газом и жидкостью. После этого жидкостной поток формируют закрученным газовым потоком по его оси в виде пленки на поверхности тела вращения. При этом осуществляют вторую стадию контактирования (зона В) между жидкостной пленкой (Г ) и турбулизирующим ее газовым пол оком. Далее эту пленку жидкости ( Д диспергируют закрученным газовым потоком С(, на мелкодисперсную узкую фракцию капель жидкости (зона С) с получением значительной межфазной поверхности. При этом осуществляют контакт между газом и жидкостью в образовавшемся газо-жидкостном потоке О] н- 2 и подают его на разделение. После разделения часть газового потока С] направляют на соединение с газовым потоком Сг с получением конечного (после контакта) газового потока Ск, а жидкостной поток подают на лежащую ниже ступень контакта.  [c.279]

Рассмотрим поток жидкости в каналах, образованных лопастями вращающегося рабочего колеса лопастной гидравлической машины. В этом случае движение жидкости будет сложным, состоящим из относительного движения вдоль каналов и вращательного движения вместе с рабочим колесом. Уравнение Бернулли для установившегося относительного движения можно вывести, рассматривая элементарную струйку идеальной жидкости. На рис. 144 показаны две лопасти рабочего колеса гидравлической турбины, между которыми движется поток жидкости. Рабочее колесо, а следовательно, и его лопасти вращаются вокруг оси О с угловой скоростью а) при радиусах вращения Г и г . Входное и выходное сечения канала, образованного лопастями, обозначим сечениями 1—I и 2—2.  [c.224]

В гидравлической турбине совершается обратный процесс преобразования энергии потока жидкости в механическую энергию вращения вала двигателя Движение жидкости в турбине происходит под напором, создаваемым разностью уровней верхнего и нижнего бьефов, а вращение вала рабочего колеса — в результате активного или реактивного воздействия потока на изогнутые лопасти турбины. При этом жидкость движется между лопастями рабочего колеса в радиально-осевом или осевом  [c.229]

Благодаря наличию реактора в рабочей полости гидротрансформатора угловая скорость турбины изменяется в зависимости от величины нагрузочного момента на ее валу. Таким образом, созданный насосом поток жидкости в гидротрансформаторе, проходя последовательно лопатки турбины и реактора, увлекает турбину в сторону вращения насоса с переменным кру-  [c.293]

При установившемся движении жидкости в равномерно вращающемся канале динамический реактивный момент действия потока на стенки канала относительно оси его вращения определяется изменением секундного момента количества движения потока и равен (рис. 13-9)  [c.364]

Обычно цилиндровый блок вращается, а распределительное устройство неподвижно. Когда а 0, то при вращении блока J поршни 2, шарнирно связанные шатунами 5 с наклонной шайбой б или ведущим диском 9, совершают возвратно-поступательные перемещения в цилиндрах. Удаляясь от распределительного узла 3, поршни совершают всасывание жидкости, а приближаясь к нему — нагнетание. Подвод жидкости к цилиндрам и отвод от них осуществляется через отверстия в торце цилиндрового блока, которые попеременно соединяются с распределительными серповидными окнами 7 и 8, имеющимися в распределителе 3. Когда поршни доходят до крайних точек, то отверстия цилиндров располагаются против перемычек между окнами 7 и б, благодаря чему пиния всасывания отделяется от линии нагнетания. Для предотвращения ударного действия обратного потока жидкости в момент соединения цилиндра с полостью нагнетания на концах окон предусмотрены узкие канавки малого сечения, которые соединяют цилиндры с полостью нагнетания до соединения их с основными окнами. Благодаря этому происходит плавное повышение давления в цилиндре до давления в полости нагнетания.  [c.169]


Кавитационное разрушение — это повреждение металла, связанное с гидравлическим ударом жидкости в местах схлопывания пузырьков газа на границе жидкости с твердым телом. При попадании потока жидкости в область пониженного давления (ниже давления насыщенного пара этой жидкости при данной температуре) пузырьки газа в жидкости расширяются, а при переходе жидкости в зону повышенного давления они сжимаются с большой скоростью, схлопываются , что сопровождается гидравлическим ударом. Области пониженного давления образуются при расширении потока, вращении жидкости, наличии препятствий на пути потока или вследствие вибрации. Многократное схлопывание пузырьков газа на поверхности металла вызывает повреждение защитных пленок, деформацию и разрушение поверхности металла. Кавитационному разрушению подвержены всасывающие патрубки и рабочие колеса насосов, трубы в местах сужений и резких поворотов направления потока, гидротехнические сооружения и др.  [c.18]

Первое начало термодинамики в применении к потоку упругой жидкости играет большую роль в технической термодинамике. В паровых и газовых турбинах, в компрессорных машинах и в струйных аппаратах через рабочие органы движется непрерывный поток рабочего тела, в котором совершаются сложные процессы преобразования энергии. Как было показано в гл. VII, в турбинах энергия потока преобразуется в работу вращения вала, в компрессорных машинах происходит обратный процесс —подводимая (затрачиваемая) работа внешнего источника, вращающего вал компрессора, преобразуется в энергию рабочего тела.  [c.198]

На рис. 88, б показан центробежный регулятор непрямого действия, который применяется в том случае, когда сила, передаваемая от муфты регулятора 3, недостаточна для того, чтобы плавно перемещать заслонку. Для перемещения заслонки в этом случае применяется вспомогательный двигатель (серводвигатель) в виде гидроцилиндра 6, а муфта регулятора 3 перемещает (с небольшим усилием) шток золотника 7, который служит распределителем, переключающим поток жидкости в ту или другую полость гидроцилиндра. При установившемся движении оба окна (отверстия) в корпусе золотника перекрыты, и поршень гидроцилиндра неподвижен. При увеличении скорости вращения вала двигателя муфта регулятора 3 поднимается, жидкость поступает в нижнюю полость гидроцилиндра, поршень идет вверх, а заслонка опускается, восстанавливая равновесие между силами движущими и силами сопротивления.  [c.310]

Подбирая углы аир, можно, не увеличивая расстояние от индуктирующего провода до точки удара струи в нагреваемую поверхность, уменьшить угол между плоскостью, касательной к нагреваемой поверхности в точке удара, и осью струи и таким образом избежать отражения струи в зону нагрева. Возникающие центробежные силы отбрасывают частицы жидкости от закаливаемой детали и не дают ей подтекать в зону нагрева. Основной недостаток- рассмотренных выше способов охлаждения закаливаемых деталей с помощью душевых устройств — неравномерность охлаждения. Области, в которые ударяют струи жидкости, охлаждаются гораздо быстрее, чем соседние. В результате возникают закалочные трещины [46]. Для выравнивания условий охлаждения закаливаемые детали приходится вращать. Из-за этого усложняются устройства. В некоторых случаях вращать деталь нельзя. Так, например, при термообработке шлицевых и зубчатых деталей вращение может даже усугубить неравномерность охлаждения из-за отражения струй воды выступами на обрабатываемой детали. Для обеспечения равномерного и интенсивного охлаждения на Московском автомобильном заводе имени И. А. Лихачева разработан новый метод охлаждения быстродвижущимся потоком воды. Охлаждающая жидкость подается в зазор между закаливаемой поверхностью и индуктирующим проводом (см. рис. 10-14) из специальной полости большого объема скорость жидкости в этом объеме незначительна, поэтому давление во всех точках выхода ее в зазор одинаково, а следовательно, одинакова и скорость прохождения жидкости вдоль охлаждаемой поверхности. У выхода площадь поперечного сечения потока жидкости несколько сужается, создает некоторый подпор, чтобы жидкость перемещалась сплошным потоком без разрыва. Рассматриваемые устройства не имеют большого количества отверстий малого диаметра, которые легко засоряются. Для повышения производительности установок закаливаемые изделия после окончания нагрева перемещают в охлаждающее устройство, установленное рядом с индуктором. Пока идет нагрев одной детали, вторая  [c.101]

Коррозия ускоряется, если образцы находятся в быстром потоке жидкости при высоком давлении или когда пузырьки, имеющиеся в жидкости, попадают на поверхность образцов, что препятствует стабилизации защитного слоя. Для изучения коррозии в потоке с высокими скоростями нельзя просто вращать образец в жидкости, поскольку при этом жидкость также приводится во вращение, так что не удается точно определить действительную скорость относительного движения жидкости. В статье описаны новая аппаратура, методика и результаты ускоренных испытаний материалов в моноокиси фтора (OFj) при температуре —63 °С.  [c.99]

При установившемся движении жидкости в равномерно вращающихся каналах динамический момент действия потока на стенки относительно оси вращения канала равен  [c.663]

При переходе на скоростное шлифование необходимо сократить вспомогательное время. Повышение производительности будет более существенным при внедрении элементов автоматизации, направленных на снижение вспомогательного времени (измерение детали, подвод детали к кругу, правка круга и т.д.) быстрый подвод шлифовальной бабки к детали включение вращения детали подача СОЖ черновая и чистовая подача шлифовальной бабки по достижении заданного размера детали, который обеспечивается прибором -активного контроля выключение вращения детали и подачи СОЖ. При скоростном шлифовании необходимо следить за подводом смазочно-охлаждающей жидкости в зону резания. Главной задачей является создание препятствий к образованию воздушного. потока, чтобы рабочая жидкость смогла достичь зоны резания. С этой целью в кожух монтируется пневматическая насадка-трубка, имеющая несколько поперечных отверстий, через которые воздух подается в направлении, противоположном вращению круга. Имеются также и другие устройства для обеспечения обильного охлаждения при скоростном шлифовании.  [c.178]


Вращение жидкости в сосуде. К числу классических проблем гидродинамики принадлежит проблема расчета истечения жидкости из цилиндрического сосуда через круглое отверстие иа его дне. Экспериментально известно, что при таком истечении поток, казавшийся в начале покоящимся, приобретает в зоне стока, кроме естественной радиальнои скорости, также значительную вращательную скорость. (Резкое увеличение скорости вращения каждый наблюдал, скажем, при спуске воды из ванны.)  [c.251]

Определим положение оси вращения жидкости в трубе тороидальной формы, при котором ось вращения устойчива. Ограничимся рассмотрением труб, меридиональное сечение которых имеет ось симметрии, перпендикулярную оси тора (рис. 17). У такой трубы ось вращения жидкости при ее устойчивом положении расположена на оси симметрии и распределение скоростей в правой и левой половинах сечения одинаково. Устойчивое положение оси вращения получается, ес.ти замедление жидкости из-за трения о стенку, не изменяет закона распределения скоростей. При этом скорости во всех точках сечения трубы изменяются во времени по линейному закону и отношение изменения скорости Ди за одинаковые малые промежутки времени Ai к скорости во всех точках одинаково Ди/и = onst. Определим направление перемещения оси вихря в результате торможения жидкости о стенку при неустойчивом положении оси. Рассмотрим две образующие ОА и ОВ нормальных сечений потока в тороидальной трубе, симметричные относительно оси симметрии. Торможение потока в результате трения жидкости об участок стенки, расположенный в окрестности точки А, вызовет удлинение образующей ОА и, следовательно, перемещение оси вихря О в направлении касательной к образующей ОА в точке О. Одинаковое торможение в окрестностях точек А п В вызовет перемещение оси вихря вдоль оси симметрии GH к периферии. Определим положение таких образующих нормальных сечений, удлинение которых вследствие торможения о стенки не вызывает радиального перемещения центра вихря. Такими образующими являются образующие ОС и 0D, касательные в точке О прямой EF, параллельной оси тора. Эти образующие делят сече-  [c.27]

С произвольным распределением скорости жидкости в тангенциальном направлении, но без учета тангенциального ускорения частиц. Крайбел [4381 рассматривал эту задачу, полагая, что схема газового потока соответствует модели вращения твердого тела. Свободновихревое движение жидкости при одинаковой осевой скорости обеих фаз, но без учета изменений тангенциальной и радиальной скоростей частиц в осевом направлении исследовалось в работе [343]. Так как во всех этих работах рассчитывались только траектории частиц, то использовалась система координат Лагранжа, что само по себе исключительный случай в гидромеханике. Во всех этих исследованиях не учитывалось распределение плотности и скорости отложения частиц.  [c.339]

Итак, в механике холестериков появляется зависимость тен зора напряжений и вектора N от градиента температуры ) Форма этой зависимости (векторное произведение [nVT]) озна чает, что градиент температуры приводит к появлению закручи вающих моментов, действующих на директор и на массу жидкости В то же время молекулярное поле (сопровождающее вращение директора относительно жидкости) и градиенты скорости жидкости гриводят к появлению в ней тепловых потоков.  [c.226]

Наряду с этим частицы жидкости, находящиеся в пограничном слое перед цилиндром, под действием сил вязкости приобретут скорость, направленную вверх. Вследствие этого точка А (рис. 344), в которой скорость жидкости равна нулю, сместится по сравнению с рис. 326 в направлении, противоположном вращению цилиндра, —в область, где скорость, сообщаемая жидкости стенками цилиндра, направлена навстречу движению обтекающей жидкости. Сместятся также и точки D и D", в которых происходит отрыв потока, по сравнению с их положением на рис. 326 для невращающегося цилиндра. Точки D и D" обе сместятся в направлении вращения цилиндра, так как поток, обтекающий цилиндр в направлении его вращения, будет отрываться дальше, а обтекающий против его вращения —ближе, чем в случае  [c.562]

Способ контакта газа и жидкости с последующей сепарацией фаз осуществляется следующим образом (рис. 10.2). Газожидкостный поток Ср закручивают. Жидкостной поток 1, формируют закрученным газовым потоком в виде пленки на внутренней поверхности тела вращения в поле центробежных сил. Предварительно разделенный газовый поток подают на коническую поверхность на фильтрацию (на 2-ю ступень сепарации), отфильтрованную жидкость (поток /) объединяют с жидкостным потоком пленки и с байпасирующим потоком газа Со для улучшения транспортировки жидкости. Часть этого объединенного потока подают на рециркуляцию (Ср), часть потока фильтруют (Сф) на обтцей замкнутой поверхности. Отфильтрованную жидкость отбирают потоком L, а газ для транспортировки -потоком С.,р после чего его смешивают с основным газовым потоком С. Таким образом, основной газовый поток С и поток С.,.р проходят ступень тонкой очистки (фильтрацию). Ступени грубой или тонкой фильтрации одновременно проходит и предварительно разделенный жидкостный поток.  [c.277]

Характер воздействия массовых сил на поток зависит от взаимного направления угловых скоростей цилиндрических поверхностей и от величины этих скоростей. При неподвижном внешнем цилиндре окружная скорость жидкости в зазоре увеличивается от нуля на поверхности внешнего цилиндра до скорости вращения поверхности внутреннего цилиндра (рис. 8.9, а). В этом случае массовая сила и производная dFldn имеют противоположные направления и, следовательно, поле массовых сил оказывает активное воздействие на поток. В такой системе под влиянием массовых сил возникают вихри Тейлора, имеющие форму торов (рис. 8.10, а). Соседние вихри вращаются в противоположных направлениях.  [c.354]

Исследование теплоотдачи при вибрации и вращении поверхности нагрева. Выше было показано влияние искусственной турбулизацип потока на интенсивность конвективного теплообмена. Создание закрученного потока повышает скорость движения потока жидкости, что приводит к увеличению интенсивности теплоотдачи. Такого л<е увеличения скорости можно достигнуть не за счет движения среды, а за счет двил ения поверхности теплообмена. Так, при вращении пилиндра в неограниченном объеме частицы жидкости вследствие вязкости вовлекаются в круговое движение. Частицы жидкости, находящиеся на поверхности, движутся с такой же скоростью, с какой вращается контур цилиндра по мере удаления от поверхности скорость движения жидкости уменьшается, а вдали от нее практически отсутствует. 292  [c.292]

Нарастание давления, начавщееся у точки В кольцевого зазора в подшипнике (рис. 245), казалось бы, если руководствоваться только формулой (а), должно непрерывно продолжаться до точки А , где угол клинового зазора обращается в нуль. Однако, как видно из рис. 245, нарастание давления уже заканчивается в точке Е, лежащей раньше точки а дальше, вплоть до точки С, находящейся е расширяющейся части кольцевого зазора, имеет место непрерывное уменьшение давления. На первый взгляд такой ход кривой давлений может быть объяснен влиянием инерции жидкости, так как по мере приближения к точке А1 скорость потока смазки непрерывно растет за счет сужения сечения, а на это увеличение скорости, на основании уравнения Бернулли, должно затрачиваться внутреннее давление. Однако, как известно, и мы это подчеркивали раньше, в условиях течения при малых зазорах влиянием инерции жидкости можно пренебречь. Поэтому объяснение явления уменьшения давления в области малых толщин слоя смазки будет иным, но также связанным с фактом увеличения екорости. Если скорости в кольцевом потоке смазки рассматривать в области сравнительно больших толщин слоя смазки, то средняя скорость в каждом отдельном сечении оказывается, как правило, меньше 0,5Уц, где Уц — окружная скорость цапфы. Вязкие же еопротивления, связанные с поддержанием таких скоростей, преодолеваются самим вращением цапфы без затраты на это внутреннего давления, даже наоборот, этот процесс сопровождается возрастанием давления. По мере же приближения к точке Л1, средняя скорость в потоке становится превышающей величину 0,ЬУц. В результате сопротивления течению жидкости, связанные с такими скоростями, не могут быть преодолены лишь за счет одного вращения цапфы необходимые для этого добавочные движущие усилия и получаются за счет падения давления. В части зазора, находящегося непосредственно за течение смазки происходит еще со средними скоростями, превышающими 0,ЬУц, поэтому для поддержания такой скорости недостаточно одного вращения цапфы, а требуется создание движущих усилий за счет дальнейшего снижения внутреннего давления, которое и продолжает падать вплоть  [c.350]


Условие равенства нулю толщины пленки, жидкости в конце зоны нагрева выполняется лишь в том случае, когда в ЦТТ заправлено определенное количество рабочей жидкости, обеспечивающей передачу теплового потока Q при заданной скорости вращения. При изменении этой скорости или величины теплового потока количество теплоносителя в ЦТТ может стать избыточным или недостаточным, для перЬдачи данного теплового потока. При этом изменяется профиль толщины пленки по длине ЦТТ и соответственно эффективность теплопередачи. Таким образом, в цилиндрических ЦТТ вопрос оптимальной заправки трубы рабочей жидкостью является весьма существенным.  [c.96]

Pile. 25. Зависимость количества рабочей жидкости, заправляемой в ЦТТ, от скорости вращения / — мощность теплового потока, передаваемого ЦТТ, составляет 1000 Вт 2—500  [c.98]


Смотреть страницы где упоминается термин Вращение жидкости в потоке : [c.544]    [c.141]    [c.158]    [c.314]    [c.63]    [c.156]    [c.158]    [c.29]    [c.70]    [c.64]    [c.134]    [c.56]    [c.74]   
Физическая теория газовой динамики (1968) -- [ c.58 ]



ПОИСК



Вращение жидкости

Отрыв установившегося ламинарного потока жидкости на телах вращения и других пространственных телах

Поток жидкости

Тело вращения, ось которого расположена перпендикулярно направлению потока невязкой жидкости



© 2025 Mash-xxl.info Реклама на сайте