Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические Колебания изгибные

В твердых однородных и изотропных телах, как в системах с распределенными физико-механическими параметрами, могут возникать продольные волны (волны сжатия и расширения) и поперечные (волны сдвига). Продольные волны не имеют дисперсии, т. е. фазовая скорость их постоянна и не зависит от частоты. Кроме продольных волн, называемых симметричными, в пластинах, к которым относятся различные ограждающие конструкции, возникают асимметричные или изгибные волны. Скорость распространения их уже зависит от частоты колебаний. Изгибные волны имеют большое значение при оценке звукоизоляции конструкции  [c.6]


Демпфирующим свойствам материалов посвящена большая литература. Отметим литературные источники, в которых приводится библиография по этому вопросу Пановко Я- Г, Внутреннее трение при колебаниях упругих систем. — М. Физматгиз, 1960 Писаренко Г. С. Рассеяние энергии при механических колебаниях. — Киев Наукова думка, 1962 Писаренко Г. С., Яковлев А. П., Матвеев В. В. Вибропоглощающие свойства конструкционных материалов (справочник). Киев Наукова думка, 1971. Помимо основных понятий о демпфирующих свойствах материалов обсуждены основные методы определения характеристик рассеяния энергии при продольных, крутильных и изгибных колебаниях (энергетический, термический, статической петли гистерезиса, динамической петли гистерезиса, кривой резонанса, фазовый, резонансной частоты, затухающих колебаний, нарастающих резонансных колебаний) и приведена информация о демпфирующих свойствах многих материалов.  [c.68]

При вводе механических колебаний в свариваемые металлы изделие начинает вибрировать с ультразвуковой частотой. Форма колебаний определяется геометрическими размерами изделия. В наиболее простом и распространенном случае — сварка листа прямоугольной формы — в последнем устанавливается стоячая волна с характерным чередованием узлов и пучностей плоской волны изгибных колебаний. Уровень напряжений, возникающих в пучностях, определяется мощностью энергии, вводимой в зону сварки. При этом возникает опасность появления микро-и макротрещин в зоне сварки. Образование трещин при достаточном уровне энергии свойственно металлам, обладающим малой пластичностью, имеющим местные дефекты, чрезмерный наклеп и т. п. Для снижения вредного эффекта вибрации свариваемого изделия применяют струбцины с резиновыми прокладками, предварительное снятие заусенцев, скругление углов, если это возможно по условиям изготовления детали, предварительный отжиг места соединения и т. п. Наиболее рациональной мерой является снижение амплитуды колебаний сварочного наконечника.  [c.39]

Для контроля металлов посредством определения их поверхностных механических свойств применяют акустические твердомеры. Основной принцип, реализуемый при рассматриваемом подходе, заключается в наблюдении за реакцией диагностического щупа, приводимого в соприкосновение с контролируемой поверхностью. Реакция обусловлена механическим (в частности акустическим), электромагнитным или электрохимическим взаимодействием щупа с объектом контроля. Механические характеристики определяют на основе регистрации изменения резонансных частот механических колебаний стержня после приведения его в контакт с контролируемой поверхностью при задании определенного усилия прижима, что обеспечивается конструкцией щупа. Используя колебания разных типов (продольные, изгибные, крутильные), можно определить, кроме числа твердости, степень анизотропии поверхностных слоев материала, которая в частности содержит информацию о величине внутренних напряжений в материале. В настоящее время методики развиты применительно к шероховатым поверхностям, что позволяет проводить измерения при минимальной подготовке контролируемой поверхности или вообще без нее. Основу этого обеспечивает статистическая обработка данных, получаемых в близких, но различных точках. Установлена устойчивая статистическая связь между дисперсией приращений при многократном повторении измерений и параметрами шероховатости.  [c.27]


Для правильного определения наименований и числа звеньев, с которых наиболее целесообразно снимать сигналы, необходимо знать природу возникающих в MP колебаний. Существуют работы по изучению колебательных процессов, в которых механические колебания делятся по форме и виду. Известны такие формы механических колебаний, как продольные, поперечные, изгибные, осевые, крутильные. Колебания также можно разделить по признакам и видам. Например, по энергии, питающей колебательную систему, колебания могут быть следующих видов свободные, вынужденные, параметрические, автоколебания, колебания от соударения упругих тел, случайные. Колебания можно различать по числу степеней свободы, характеру колеблющейся системы, закону изменения основных параметров и другим признакам.  [c.258]

В образцах в зависимости от их форм и размеров, типа возбудителя и приемника, способа крепления и схемы приложения динамической нагрузки можно возбуждать продольные, изгибные, крутильные и более сложные виды колебаний. Данный метод можно использовать также при вибрационных испытаниях крупногабаритных изделий, однако при этом существенно изменяется методика испытаний, способы приложения нагрузок, а также способы возбуждения и регистрации колебаний. Метод используется также при оценке интегральной жесткости крупногабаритных конструкций [11, 22] и не может быть использован при локальном определении физико-механических характеристик в изделии. Для практического применения этого метода необходимо знать геометрические размеры изделия и плотность материала, обеспечить условия закрепления изделия на опорах и преобразователей на изделии, а также нормальные температурно-влажностные условия окружающей среды.  [c.87]

Развитие быстроходности современных машин, приборов и автоматов, связь чисто механических агрегатов с электрическими, магнитными, гидравлическими, пневматическими и другими агрегатами, все большее распространение машин вибрационного действия вызывает усложнение и их расчетных колебательных систем. Расчеты на колебания уже не ограничиваются однородными по физической природе системами, а все больше охватывают смешанные системы продольно-изгибно-крутильные, электромеханические, электро-механоакустические и т. д.  [c.21]

При анализе процесса демпфирования колебаний конструкций авторы в основном основываются на стержневой модели Бернулли — Эйлера, в дифференциальное уравнение которой вводят приведенную изгибную жесткость. Для слоистых конструкций, составленных из металлов, это приемлемо в тех же случаях, когда сопротивление материалов слоев различается очень существенно, когда используется комбинация мягкого и жесткого материалов, гипотезы Бернулли и Тимошенко для всего поперечного сечения могут оказаться неприемлемыми и здесь неизбежно построение более сложных механических моделей стержней, учитывающих поперечный сдвиг и поперечное обжатие каждого слоя. Авторы исследуют процессы колебаний весьма сложных конструкций и, естественно, пытаются использовать простейшую модель для ее анализа. Однако прежде чем использовать простейшую модель, соответствующую линейному дифференциальному уравнению четвертого порядка, уместно было бы сопоставить эту модель с модифицированной, отвечающей существу проблемы, для оценки сделанных допущений.  [c.7]

Взаимодействие параметрической колебательной системы с источником энергии удобно рассмотреть на примере простой механической модели, изображенной на фиг. 5. Упругий стержень АВ подвергается действию периодической силы в направлении оси х, вследствие чего изгибная жесткость стержня испытывает периодические изменения. При определенных условиях эти изменения могут стать причиной возникновения колебаний стержня в направлении оси у.  [c.85]

Роторы турбин и генераторов находятся под действием статических и повторно-статических (малоцикловых) напряжений, обусловленных центробежными силами и тепловыми нагрузками при испытаниях, эксплуатационных пусках и остановах, а также при изменении мощности. Число таких циклов может достигать 20—60 и более в год при общем числе за расчетный ресурс 500— 1000 и более. Повторяющаяся смена нагрузок вызывает в роторах (особенно в местах повышенной концентрации и значительных температурных напряжений) накопление малоцикловых повреждений. Сочетание повторных нагрузок с повышенными температурами в элементах конструкций высокого давления является причиной ускорения накопления повреждений за счет длительных статических повреждений. Кроме того, на низкочастотные (10- —10 Гц) циклы высоких напряжений накладываются высокочастотные (в диапазоне частот 10—150 Гц) циклы переменных напряжений, обусловленные действием нагрузок от силы тяжести на оборотных частотах , срывом масляного клина в подшипниках или вибрационных нагрузок за счет изгибных и крутильных колебаний роторов по соответствующим формам. Суммарное число циклов нагружения за расчетный ресурс достигает при этом 10 — 10 . Вибрационная составляющая циклических напряжений для роторов турбин и генераторов при современном уровне балансировки, предварительных доводочных работ и контроля вибраций при эксплуатации может быть снижена практически до безопасных уровней при нормальной эксплуатации. Но роль этой составляющей резко возрастает при изменении жесткости роторов на стадии развития в них макротрещин. Для роторов паровых турбин в интервале указанных низких и высоких частот могут иметь место циклы нагружения с промежуточными частотами (0,01 —10 Гц) в результате неравномерности давлений и температур потоков пара. Таким образом, фактический спектр механических и температурных напряжений для роторов турбин и турбогенераторов оказывается достаточно сложным. Сложность формы цикла возрастает по мере повышения температур (образуются деформации ползучести), а также за счет изменения асимметрии цикла при наличии остаточных напряжений.  [c.7]


На усталостные явления в металле котла ультразвуковые колебания частотой 20—40 кГц отрицательного воздействия не оказывают, так как механические напряжения, возникающие в металле при разрушении накипи, не превышают по данным Акустического института АН СССР, 10% допустимых значений. На рис. 7.5 показан график механических напряжений, возникающих в металлической пластине при распространении плоской изгибной волны и при разрушении накипи. На этом же рисунке по вертикали показаны механические напряжения, а по горизонтали— толщина образовавшейся накипи.  [c.118]

Менее известны электромеханические ФВП с упругими колебательными системами в виде струн, мембран, пластин, оболочек. Струнные ФВП представляют собой конструктивно обособленные узлы или устройства, включающие механический резонатор с линейным одномерным распределением масс (т. е. струну) и встроенные элементы систем возбуждения и регистрации его колебаний — магниты, электроды и т. д. Как правило, струнные ФВП осуществляют преобразование силы натяжения струны в частоту одной из форм (обычно — низшей) ее собственных изгибных колебаний. На базе струнных ФВП созданы такие приборы, как датчики кажущихся ускорений (акселерометры), датчики давлений, датчики малых перемещений и др.  [c.444]

С целью построения форм колебаний необходимо разделить конструкции машин на два класса 1) конструкции, при колебании которых происходит смещение отдельных частей машины как абсолютно твердых тел за счет контактных деформаций в стыках 2) механические системы, при колебании которых проявляются собственные упругие (продольные, крутильные, изгибные) дес рмации элементов системы.  [c.357]

Исследования производились в таком порядке. На крутильный цилиндрический преобразователь подавалось постоянное по величине напряжение от электрического генератора частота этого напряжения плавно изменялась с помощью механического привода от самописца уровней типа Н-110. Синхронно с изменением частоты возбуждения на ленту самописца записывались сигналы с трех миниатюрных датчиков ускорений, прикрепленных к цилиндрическому преобразователю и реагирующих соответственно на крутильные, продольные и изгибные колебания.  [c.298]

Образец цилиндрической формы диаметром от сотен микронов до нескольких миллиметров жестко крепится к скручивающей системе (рис. 15) цанговыми или тисочными зажимами, до минимума снижающими потери энергии на трение по поверхности контакта. Система механической коррекции позволяет устанавливать нулевое положение маятника, например после поворота его при нагреве. Для этого неподвижный захват сделан регулируемым, т. е. он может поворачиваться обычно на 20°. Коррекция осуществляется вручную или электрическим приводом с дистанционным управлением. Демпфирующее устройство необходимо для гашения паразитных изгибных колебаний образца при закручивании маятника, а также из-за вибраций от внешних источников. Конструктивно демпфер выполняется в виде стаканчика с налитой в него демпфирующей жидкостью (масло, ртуть). Туда опущены концы подвижной части скручивающей системы (рис. 16).  [c.39]

Габариты изделия, которое можно сварить, определяются и вылетом сварочного наконечника относительно корпуса машины. Этот размер зависит в основном от длины концентратора. Так, например, при частоте 22 7,5% кгц длина волны продольных колебаний равна примерно 250 мм. Построение колебательных систем с длиной волновода продольных колебаний, равной 2—Зк, вполне приемлемо. Таким образом ЗХ =750 мм. Существо другого решения заключается в следующем. Обычно ножевые концентраторы, применяемые в механических колебательных системах, симметричны относительно своей продольной оси (рис. 22, а). Закон изменения площади поперечного сечения по его длине обусловлен типом применяемого концентратора. По условиям ввода энергии в стержень, работающий в режиме изгибных колебаний, рационально точку ввода энергии разместить возможно ближе к сварочному наконечнику— в первую пучность или узел колебательного смещения. Однако это из-за симметричности концентратора существенно сокращает рабочую зону сварочного наконечника.  [c.43]

Как было показано в гл. П, применение механических колебательных систем со стержнями, работающими в режиме изгибных колебаний, рационально. Эти волноводные звенья позволяют существенно увеличить технологические возможности машины — стабильность ее работы и диапазон форм свариваемых деталей.  [c.82]

При изготовлении механических колебательных систем со сменными волноводными звеньями, с резонирующими стержнями, работающими в режиме изгибных или крутильных колебаний, возникает необходимость сопряжения этих звеньев. Неразъемный тип соединения — сварка по прочности, надежности, постоянству акустического сопротивления является более совершенным по сравнению с любыми другими видами соединений.  [c.96]

Если механические свойства исследуемого материала линейны, т. е. если его упругие свойства не зависят от амплитуды, то при заданной частоте колебаний период и логарифмический декремент свободных колебаний будут определять механическое поведение этого материала. Техника эксперимента для такого типа измерений проста, и этим методом было проведено большое число исследований внутреннего трения. Так как для того, чтобы облегчить наблюдения, желательна большая амплитуда, этот метод применялся главным образом с использованием крутильных и изгибных колебаний. При очень медленных колебаниях как период, так и логарифмический декремент можно измерить непосредственно, при высоких же частотах можно использовать фотографический или электрический метод записи. Чтобы охватить всю необходимую область частот, могут быть использованы образцы различных размеров. В общем случае более удобно, однако, использовать дополнительные инерционные элементы, что позволяет изменять период колебаний при одном и том же образце.  [c.123]


Ноли [100] исследовал упругие свойства резиноподобных материалов, причем он использовал пять различных экспериментальных методов, чтобы охватить всю область частот между 0,1 гг и 120 кгц. При самых низких частотах (от 0,1 до 25 гц) применялся метод свободных колебаний, причем резиновый образец действовал как упругая восстанавливающая сила на балку, качающуюся на ножевой призме. При высоких частотах использовались три различных резонансных метода и метод распространения волн. Метод распространения волн будет рассмотрен в следующем параграфе, а здесь мы бегло упомянем о резонансных методах, которые описал Ноли. При частотах между 10 и 500 гц Ноли пользовался методом резонансных колебаний язычка, при котором образец был защемлен в записывающую головку граммофона и изгибные колебания сообщались ему через зажим. Этот метод удобен, но частоты, которые он может перекрыть, ограничены как механическими возможностями записывающей головки, так и упругими свойствами образца, поскольку резонансная частота может быть изменена только путем изменения его размеров или формы.  [c.130]

Ноли [101], экспериментальные исследования которого уже были описаны, перекрыл наибольшую область частот для резиноподобных материалов при различных температурах. Он получил результаты для модуля Юнга при частотах между 0,1 гц и 120 кгц для различных резин. В его экспериментах колебания были как продольными, так и изгибными, так что действующей упругой постоянной был модуль Юнга. По аналогии с электрическими измерениями. Ноли выразил свои результаты через комплексный модуль Юнга в форме Действительная часть модуля соответствует упругой восстанавливающей силе и для совершенно упругих материалов равна модулю Юнга, а мнимая часть Е является мерой механических  [c.146]

Импедансные методы используют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. Обычно оценивают механический импеданс 2-Р, где и V - комплексные амплитуды возмущающей силы и колебательной скорости соответственно. В отличие от характеристического импеданса рс, являющегося параметром среды, механический импеданс характеризует конструкцию. В импедансных методах используют изгибные и продольные волны.  [c.213]

При использовании изгибных волн преобразователь стержневого типа (рис. 25, а) содержит соединенный с генератором I излучающий 2 и приемный 4 пьезоэлементы. Через сухой точечный контакт преобразователь возбуждает в изделии 5 гармонические изгибные колебания. В зоне дефекта соединения модуль 2 механического импеданса 2 уменьшается и меняется его  [c.213]

Совмещенный преобразователь имеет одну зону контакта с контролируемым объектом, через которую возбуждают изгибные колебания и оценивают механический импеданс. Совмещенные преобразователи делятся на абсолютные и дифференциальные.  [c.264]

Таким образом, РС-преобразователь позволяет обнаруживать более глубокие дефекты и использовать более высокие частоты, чем совмещенный. Для уменьшения размеров преобразователей их рабочие частоты выбирают в пределах 12. .. 35 кГц. При 2 = О и 2 = < = О и С/2 = 0. Поэтому коэффициент передачи Р(2 ) = С/2 1 РС-преобразователя имеет максимум при согласовании механических импедансов вибратора и его общей нагрузки 2о. В области импедансов 2д > 2д (2 - значение, соответствующее максимуму Р) вызываемое дефектом уменьшение 2д увеличивает Р, в области 2о < 2 уменьшает. Контактные наконечники преобразователей дефектоскопов, использующих изгибные колебания, изготовляют из корунда и других износостойких материалов.  [c.267]

Импедансный метод с совмещенным преобразователем, использующий непрерывные изгибные колебания, позволяет обнаруживать зоны пониженной прочности склеивания обшивки с сотовым заполнителем. Обычно снижение прочности склеивания обусловлено плохой подгонкой размеров соединяемых элементов. Если на участках доброкачественного склеивания соты прорезают клеевую пленку и подходят вплотную к обшивке, то в ослабленных зонах между сотовым блоком и обшивкой существует заполненный клеем зазор (рис. 89), который уменьшает жесткость опоры обшивки и, следовательно, механический импеданс конструкции. Это изменение, однако, меньше, чем в зонах непроклеев. Однако получить надежную корреляцию прочности с показаниями импедансного дефектоскопа и в этом случае не удается.  [c.276]

Внутреннее трение и дисперсия модуля упругости. Пусть в стержне возбуждены продольные, крутильные или изгибные колебания (с очень малой амплитудой, чтобы исключить пластические деформации). Для уменьшения потерь механической энергии колеблющегося тела подвесы и опоры образца располагают в узлах коле баний, иногда образец помещают в вакуум. Оказывается, что и в этом случае колебания затухают. Это значит, что механическая энергия колеблющегося тела уменьшается, переходя в тепловую. Мерой внутреннего трения является отношение энергии АШ, рассеянной за период, к средней энергии колебаний 117 за период. В режиме свободных колебаний экспериментально определяют декремент затухания  [c.242]

В импедансном методе используют изгибные колебания обшивки в звуковом диапазоне частот. Наличие дефекта определяют по изменению полного механического импеданса 2 изделия в зоне его возбуждения датчиком. Датчик состоит из волновода 1, на  [c.168]

В контролируемом изделии при помощи пьезоэлектрического излучателя возбуждаются упругие (обычно изгибные) колебания. В случае хорошего качества склейки или вообще при наличии сплошности изделия механическое сопротивление его является высоким и жесткость детали определяется всеми элементами конструкции, соединенными в одно целое. При нарушении склейки жесткость дефектного участка резко уменьшается, что приводит к уменьшению акустического сопротивления и, следовательно, к уменьшению напряжения на пьезоэлементе, находящемся в акустическом контакте с поверхностью контролируемого изделия.  [c.155]

Для исследования нестационарных изгибных колебаний пластин из мягкого ферромагнетика, когда частота колебаний находится далеко от электромагнитного диапазона частот, достаточно рассмотреть уравнение (6.14.49). В этой динамической задаче мы проигнорируем механические граничные условия на контуре С мы предпочтем постулировать определенный правдоподобный характер изгиба, например тот, который демонстрирует бесконечная пластина с большим числом тройных пролетов или линий формы, соответствующим целым кратным (включая нулевое) от длины волны Я величин Z, У и J + У.  [c.425]

В излучателе изгибного пульсирующего типа оболочка эллиптической формы действует как механический преобразователь импеданса. Небольшая скорость колебаний оконечностей набора керамических элементов дает большую скорость колебаний основных поверхностей эллипса. В результате преобразования увеличиваются сопротивление излучения и эффективная масса водной нагрузки. Это позволяет разработчику улучшить согласование импедансов между излучателем и соприкасающейся жидкостью в целях повышения КПД и увеличения ширины полосы частот.  [c.86]


НЫХ колебаниях по толщине, реже — для работы вблизи резонансов, определяемых её длиной или шириной (поверхности, на к-рые нанесены электроды, обозначены штриховкой). При работе в диапазоне низких частот часто используются изгибные моды колебаний в этом случае две пластины склеиваются механически по большим граням, образуя т. н. биморфный элемент (рис. 2,6), электроды включаются так, чтобы возникающие при изгибе противоположные по знаку деформации выше и ниже средней плоскости возбуждали на электродах заряды одинакового знака. Круглые пластины (рис. 2,в) работают либо на толщин-ных, либо на радиальных модах колебаний. Трапециевидные пластины (рис. 2,г) применяются в качестве деталей составных колец, работающих на радиальных колебаниях в низкочастотном диапазоне. Прямоугольные и круглые стержни (рис. 2,(9 и 2,е)  [c.289]

Иначе обстоит дело в области резонанса, т. е. при fif, л 1. Амплитуда колебательного движения бруса как единого целого весьма мала и составляет около 5 % амплитуды колебательной скорости среды в падающей волне. Амплитуда изгибного движения пластины, наоборот, велика. Таким образом, несмотря на то что падающая волна возбуждает значительные изгибные колебания пластины, последняя не в состоянии инициировать колебания опоры, хотя и имеется механическая связь пластины и опоры. Этот парадоксальный факт обусловливает низкую прозрачность решетки. На частотах ///i > 1, когда значение knp уже близко к единице, также наблюдаются значительные изгибные колебания пластины, однако они хорошо передаются через шарнир на опору, в результате чего амплитуда колебаний последней становится близка амплитуде колебаний среды в падающей волне.  [c.157]

Основой экспериментов Кестера, представляющих интерес для настоящего обзора, явился остроумный прибор, описанный Фритцем Фёрстером (Forster [1937,1 ) в 1937 г. Целью было подвесить образец с помощью тонких проволочек таким образом, чтобы потери энергии в опорах или соединении опорных устройств и образца стали действительно пренебрежимыми. Были усовершенствованы различные конфигурации опор, допускающих протекание изгибных, крутильных и даже продольных колебаний параллелепипедов или цилиндров как вынужденных, так и свободных. Один из концов каждой из поддерживающих проволок был закреплен, а другой прикреплен к движущейся механической части электромагнитного преобразователя (датчика). Одна система служила как возбуждающая причина при вынужденных колебаниях, а другая как приемник. Установка позволяла определять также частоты свободных колебаний и параметр демпфирования. Статья содержала детальное описание различных рассмотренных конфигураций схем и обширное исследование многих проблем, с которыми пришлось столкнуться в процессе достижения необходимой точности измерения не только для определения модуля упругости Е, но и параметра резонансного демпфирования,— обеих величин как функций окружающей температуры.  [c.493]

На рис. 10, в показан другой вариант свободного присоединения с применением отражающего продольного звена. Это дополнительный продольный волновод III длиной Я/2, связанный с возбуждаюпщм волноводом II стяжными болтами 1, нроходяпщми через узловые флянцы 2 ж 8. Таким образом, прижатие осуществляется механической связью волноводов II и III. Под термином свободное присоединение в рассмотренных нами вариантах имеется в виду, что присоединяемый к изгибному волноводу торец насадки допускает определенную свободу взаимного перемещения контактных поверхностей, тогда как в случаях жесткого присоединения волноводы свариваются или припаиваются по всей контактной поверхности. Преимуществом свободного соединения является возможность разъединения продольного и изгибного волноводов для замены в случае необходимости одного из них. Примером применения такого соединения может служить возбуждение изгибных колебаний в расплавляющемся электроде печи электрошлакового переплава. Тогда для замены израсходованного электрода применялось свободное соединение. Такая конструкция была осуществлена нами (совместно с Ю. С. Руденко) и показала хорошие результаты. Место присоединения возбуждающего продольного волновода определяется конструктивными условиями и особенностями построения всей колебательной системы, а также необходимостью возбуждения в местах, где расположены пучности смещения.  [c.277]

Признаком дефекта служит изменение механического импеданса контролируемого изделия в зоне его касания с преобразователем пскателя, возбуждающим в изделии изгибные колебания звуковых частот Здесь Zh = Дн + / н =  [c.260]

Изменения объема тела должны сопровождаться изменениями температуры так, когда тело сжимается, его температура возрастает, а когда оно расширяется, температура понижается. Для простоты мы рассмотрим изгибные колебания консольной пластинки (язычка). Каждый раз, когда язычок изогнут, внутренняя сторона нагревается, а наружная охлаждается, так что получается непрерывный поток тепла туда и обратно поперек язычка, совершающего изгибные колебания. Если движение очень медленное, то перенос тепла совершается изотермически и, следовательно, обратимо, а потому при очень малых частотах колебаний не должно происходить никаких потерь. Если колебания происходят столь быстро, что теплота не имеет времени для перетекания поперек язычка, то условия становятся адиабатическими и попрежнему никаких потерь не возникает. При изгибных же колебаниях, периоды которых сравнимы с временем, необходимым для перетекания тепла поперек язычка, возникает необратимое превращение механической энергии в теплоту, наблюдаемое в виде внутреннего трения. Зенер [161] показал, что для колеблющегося язычка специфическое рассеяние дается выражением  [c.119]

При изгибных колебаниях механический импеданс многослойной конструкции определяется упругими свойствами, плотностью материалов и толщиной слоев, размерами консфукции, кривизной ее поверхности, наличием дефектов соединений между слоями, частотой и другими факторами. Расчет механических импедансов в общем случае сложен и ненадежен. Полезны две теоретические модели.  [c.263]

Недостатки простукивания - субъективность оценки результатов контроля и невысокая чувствительность -устраняются применением аппаратуры (МСК дефектоскопов) для анализа спектров и оценки их изменений. В изделиях ударно возбуждают изгибные упругие колебания, а получаемые акустические импульсы преобразуют в электрические сигналы и обрабатывают в электронном блоке. Колебания обычно возбуждают электромагнитными вибраторами, принимают — микрофонами или пьезоприемниками. В зоне дефекта спектр ударно возбуждаемого импульса меняется в результате изменения модулей механических импедансов 1 для соответствующих составляющих спектра. Это меняет колебательные скорости данных составляющих и, следовательно, амплитуды связанных с ними электрических сигналов. Наиболее резкие изменения механического импеданса наблюдаются при совпадении спектральных составляющих с собственными частотами отделенных дефектами слоев. Диапазон рабочих частот определяется в основном параметрами ударного вибратора, свойствами контролируемого объекта и амплитудно-частотной характеристикой приемника упругих колебаний. Обычно его выбирают в пределах 0,3. .. 20 кГц. Для контроля изделий из глухих материалов с низкими модулями упругости достаточно частот до 4. .. 5 кГц изделия из более звонких материалов (например, металлов) обладают более широкими спектрами. В большинстве случаев дефекты увеличивают амплитуды спектральных составляющих, однако иногда, например в зонах ударного повреждения армированных пластиков, наблюдается обратный эффект.  [c.272]

По данным Г. И. Буянова и Ю. В. Дряпчко (рис. 58), при испытании лакокрасочных покрытий, состоящих из акриловой грунтовки и акриловой эмали, которые нанесены на образцы из сплава Д16, при многократных циклических изгибных колебаниях было установлено, что эластичность, прочность на удар и адгезия покрытий резко снижаются. Особенно заметно ухудшение свойств после предварительного старения покрытий при -[-130° С в течение 100 ч. В охлажденном состоянии при —60° С пленкообразователь грунтовки и эмали находится в стеклообразном состоянии, поэтому показатели физико-механических свойств ухудшаются еще сильнее. Эластичность покрытия, определенная после циклических изгибных испытаний при температуре —60° С, по сравнению с ис-  [c.72]

Эти уравнения справедливы только тогда, когда значения и механического и акустического импедансов определяются массой, а диафрагма преобразователя мала по сравнению с длиной волны. Механический импеданс определяется массой на частотах выше основного резонанса массы подвески и ниже резонанса изгибных колебаний диафрагмы. Акустический импеданс или импеданс излучения на частотах, при которых размеры диафрагмы малы по сравнению с длиной волны в воде, является, как правило, инерционным сопротивлением массы. Вопросы применимости к гидроакустическим преобразователям метода Райса—Келлога подробнее рассмотрены Симсом [16].  [c.271]


Смотреть страницы где упоминается термин Механические Колебания изгибные : [c.243]    [c.152]    [c.129]    [c.174]    [c.250]    [c.329]    [c.567]    [c.107]    [c.89]    [c.567]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.240 , c.242 ]



ПОИСК



Изгибные колебания балок механических систем

Колебания изгибные

Колебания механические



© 2025 Mash-xxl.info Реклама на сайте