Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стружка Влияние режимов резания

Влияние режимов резания. Такие параметры, как скорость, подача и глубина резания, имеют важное значение, так как они определяют скорость превращения металла в стружку и производительность процесса. Стойкость инструмента и скорость резания связаны следующим соотношением  [c.176]

Для глубокого знания токарного дела необходимо и знание основ этой теории. Теория резания рассматривает общие закономерности процесса образования стружки, силы, действующие на инструмент, и их влияние на процесс резания, тепловые явления, возникающие в процессе резания, износ инструментов и пути повышения их стойкости, влияние геометрии инструментов на процесс резания и правила выбора геометрии инструментов, влияние режимов резания на усилия резания, стойкость инструмента и его производительность, правила выбора режимов резания, правила выбора смазочно-охлаждающей жидкости и способы подвода ее в зону резания и т. д.  [c.204]


В основу определения скорости потока, необходимой для непрерывного отвода дробленой стружки из зоны резания, положено условие предотвращения скопления стружки вблизи режущего лезвия. Установлено, что реализация этого условия достигается в том случае, когда скорость потока в пазу головки имеет значение, при котором объемная концентрация находится в пределах 0,005—0,0025. Зависимость объемной концентрации от скорости потока Цр в пазу головок кольцевого сверления, имеющих разную щирину реза В, показана на рис. 3.4. Из графика следует, что определяемые линией 4 сочетания параметров Рг и 1 г зависят от ширины реза (глубины резания), с увеличением которой меньшая концентрация достигается при меньшей скорости потока. Определяя объемную концентрацию рг отношением объема стружек, находящихся одновременно в пазу головки при определенной скорости потока г. к объему паза и учитывая влияние режима резания на объем элементов стружки, формулу для расчета скорости 1 г. м/с, можно записать в виде  [c.82]

Из табл. Ib—T следует а) предел усталости может значительно изменяться в зависимости от режимов резания, поэтому при изготовлении образцов необходимо соблюдать постоянство режима резания б) наибольшее влияние на предел усталости оказывают условия снятия последней стружки в) из характеристик резания при обработке образцов малых размеров наибольшее влияние на предел усталости оказывает величина подачи глубина и скорость резания влияют заметно меньше.  [c.82]

На шероховатость поверхности после точения влияют свойства обрабатываемого материала, геометрические параметры и износ инструмента, режимы резания. Влияние свойств обрабатываемого материала проявляется через процесс стружкообразования, который зависит от температуры резания. Наименьшая шероховатость поверхности при резании пластмасс получается при образовании сливной стружки.  [c.50]

Режимы резания, допустимые нормы износа расточных резцов, стойкости, усилия резания, мощность и основное технологическое время для обычной расточки даны в соответствующих нормативах резания для точения. При определении режимов для расточки следует учитывать пониженную жесткость системы, затрудненную подачу смазочно-охлаждающей жидкости и отвод стружки влияние этих факторов возрастает с увеличением длины и уменьшением диаметра обработки.  [c.28]


При черновой и получистовой обработке, когда необходимо иметь сильное охлаждающее действие среды, широко применяют водные эмульсии. Количество эмульсии, используемой в процессе резания, зависит от технологического метода обработки и режима резания (5. .. 150 л/мин). Увеличенную подачу жидкости используют при работе инструментов, армированных пластинками твердого сплава, что способствует их равномерному охлаждению и предохраняет от растрескивания. При чистовой обработке, когда требуется получить высокое качество обработанной поверхности, используют различные масла. Для активации смазок к ним добавляют активные вещества - фосфор, серу, хлор. Под влиянием высоких температур и давлений эти вещества образуют с материалом контактирующих поверхностей соединения, снижающие трение, - фосфиды, хлориды, сульфиды. При обработке заготовок из хрупких материалов (чугунов, бронз), когда образуется элементная стружка, в качестве охлаждающей среды применяют сжатый воздух, углекислоту.  [c.312]

Передний угол у измеряют в главной секущей плоскости между передней поверхностью и основной плоскостью Р . Он оказывает большое влияние на процесс резания. С увеличением у уменьшается работа, затрачиваемая на процесс резания, улучшаются условия схода стружки и повышается качество обработанной поверхности. Но увеличение переднего угла приводит к снижению прочности резца и ускоренному его изнашиванию вследствие выкрашивания режущей кромки и уменьшения теплоотвода. Различают углы положительные (+у), отрицательные и равные нулю. При обработке твердых и хрупких материалов применяют небольшие передние углы, мягких и вязких материалов — углы увеличивают. При обработке закаленных сталей твердосплавным инструментом или при прерывистом резании для увеличения прочности лезвия назначают отрицательные углы у. В зависимости от механических свойств обрабатываемого материала, материала инструмента и режимов резания углы у назначают от -10° до +20°.  [c.447]

Недостатком этого метода является сложность устройства термопары и то, что этим методом измеряется не наивысшая температура, которая имеется на граничных поверхностях трения, а некоторая более низкая температура металла, находящегося на некотором расстоянии от передней поверхности резца. Кроме того, этот метод не дает точной картины изменения температуры нагрева резца с изменением элементов режима резания, так как последние оказывают влияние на местоположение центра давления стружки на резец, а следовательно, и на место сосредоточения наивысшей температуры.  [c.101]

Зона пластического сдвига при этом может сужаться, и сдвиг будет происходить практически по плоскости. На образование прерывистой стружки оказывают влияние свойства обрабатываемого материала, режимы резания, геометрия инструмента. Переход от одного типа стружкообразования к другому происходит постепенно, и иногда элементы стружки могут быть отделены друг от друга не полностью (стружка суставчатая).  [c.28]

Недостатком этого уравнения является неопределенность периода стойкости резца и изменение показателя степени при скорости V в зависимости от величины самой скорости. Очевидно, стойкость инструмента определяется одновременно факторами как механического износа, так и температурных влияний, вызывающих различные физико-химические явления на поверхностях контакта стружки и резца, а также в зоне резания. В зависимости от обрабатываемого материала и резца, режима резания и, следовательно, температурного уровня преобладает тот или иной фактор.  [c.180]

Технологический процесс механической обработки ПМ [3, с. 90 4-6] принципиально не отличается от соответствующего процесса механической обработки металлов. Ему сопутствуют образование стружки, тепловыделение, возникновение силовых полей и т. д. Однако специфические свойства ПМ (см. раздел 2) оказывают влияние на выбор параметров режущего инструмента, режимов резания и технологической оснастки.  [c.120]

Растачивание отверстий является более сложной операцией по сравнению с наружной обработкой. Здесь, в противоположность наружной обработке, большое влияние на размеры резца оказывают диаметр и длина растачиваемого отверстия. Часто у малых размеров расточного инструмента имеют место вибрации, в особенности, если резец снабжен отогнутой головкой. Затруднены подвод охлаждающей жидкости в зону резания, отвод стружки и ее дробление., В результате инструмент работает в тяжелых условиях с пониженной стойкостью и малыми режимами резания.  [c.421]


В целях уточнения характера влияния скорости резания на величину угла ф отклонения потока стружки от передней грани резца при точении цветных сплавов производилось экспериментальное точение латуни ЛС 59-1 на других режимах со значительно большими скоростями резания V = 150- -350 м/мин, 5 = 0,2 мм/об, 1 = 2 мм. В этом случае влияние скорости резания на величину угла гр было заметным. С повышением скорости резания угол ф значительно увеличивался в некоторых опытах на 5-10°.  [c.80]

Кроме общеизвестного влияния угла X при обработке хрупких материалов резцом с плоской передней гранью, существенное влияние на направление потока стружки в горизонтальной плоскости оказывает величина главного угла ф в плане, величина радиуса г при вершине резца, число одновременно работающих режущих кромок инструмента. Причем степень влияния указанных факторов на величину угла г) находится в некоторой зависимости от режимов резания точнее, от соотношения.  [c.85]

Известно, что стружка, срезанная с хрупкого тела, является стружкой надлома и обычно представляет собой отдельные кусочки неправильной формы, полностью потерявшие взаимное молекулярное сцепление. Однако в момент образования в зависимости от конкретных режимов резания и физико-химических свойств обрабатываемого материала стружка надлома может сохранить определенную геометрическую форму и размеры благодаря механическому сцеплению отдельных частиц. Геометрическая форма и размер стружки оказывают значительное влияние на направление, кинетическую энергию, дальность распространения потока и являются весьма важным фактором при определении параметров всасывания и пневматической транспортировки стружки по трубопроводам.  [c.87]

Направление движения потока стружки при точении хрупких материалов достаточно точно определяется углом ф отклонения потока от передней поверхности резца в вертикальной плоскости и углом ipi между вектором подачи и направлением движения потока в горизонтальной плоскости. Основным фактором, резко влияющим на направление движения потока стружки в вертикальной плоскости (угол 1 )), является величина подачи s. С увеличением подачи угол гр значительно уменьшается. С увеличением скорости резания угол ор увеличивается в меньшей степени. С увеличением глубины резания при прочих равных условиях угол гр несколько уменьшается. Основными факторами, резко влияющими на направление движения потока стружки в горизонтальной плоскости (угол %), являются геометрические параметры режущего инструмента — величина главного угла в плане ф, величина радиуса при вершине резца г и число одновременно работающих режущих кромок инструмента. Влияние указанных геометрических параметров режущего инструмента на величину угла % находится в некоторой зависимости от режимов резания и главным образом от величины отношения s/i.  [c.164]

Метод прогнозной диагностики, учитывающий влияние не только скорости резания на интенсивность пылеобразования, но и другие факторы — глубину резания и величину подачи, предложен А. В. Рябовым с соавторами при обработке серого чугуна [23 ]. Этот метод основан на математической обработке экспериментальных исследований запыленности при обработке серого чугуна при различных режимах резания, опубликованных во втором издании книги (А. Ф. Власов. Удаление пыли и стружки от режущих инструментов. М. Машиностроение, 1966).  [c.179]

Проводилось испытание этого пылестружкоприемника и при фрезеровании соответствующей торцовой фрезой О = 250 мм) алюминиевого сплава АЗВ. При режимах резания V = 1М0 м/мин, 8 — 1660 мм мин и i = 1,3 мм эффективность удаления стружки и пыли Эу составляла 85%. Около 15% элементных стружек было выброшено из правой части приемника вследствие отражения от его внутренних стенок. Изучая влияние скорости резания на выбрасывание стружек из приемника в целях создания эффективного приемника для конкретных производственных условий обработки алюминиевого сплава АЗВ, мы снизили скорость резания до у = 800 м мин, ожидая при этом получить более высокую эффективность улавливания. Однако результаты эксперимента оказались совершенно неожиданными — Эу — Ъ0%. В этом случае около 20% стружек было выброшено из левой части приемника вследствие отражения от его внутренних стенок. Объяснение этому было найдено после сопоставления форм стружек, образующихся при V — 1340 м мин и г = 800 м мин (в обоих случаях  [c.130]

При выполнении работы необходимо проследить влияние обрабатываемого материала и элементов режима резания на вид образующейся стружки исследовать деформацию в срезаемом слое методом накатных координатных сеток исследовать зависимость коэффициента усадки стружки от элементов процесса резания и геометрических параметров резца оформить экспериментальные данные и результаты вписать в протокол (форма № 7).  [c.104]

На величину усадки стружки оказывают влияние ряд факторов физико-механические свойства обрабатываемого металла, режимы резания, геометрия инструмента, свойства охлаждающей жидкости и т. д.  [c.406]

Подачу назначают из условия обеспечения требуемой шероховатости обрабатываемой поверхности. При черновом точении выбирают подачу, максимально допустимую исходя из условия сохранения жесткости детали. Почти для всех пластмасс при подачах не выше 0,2 — 0,25 мм/об обеспечивается наилучшая чистота поверхности. В интервале подач 0,3 — 0,5 мм/об резко возрастает шероховатость и снижается стойкость инструмента,. поэтому этот диапазон подач можно рекомендовать для черновой обработки. При черновом точении реактопластов практически невозможно получить шероховатость поверхности менее 5 класса, а точность обработки —выше 4—5 класса. При более высоких требованиях к качеству токарной обработки необходимо вводить операцию чисто-, вого точения, режимы резания которого характеризуются малыми подачами (5 = 0,03—0,05 мм/об) и высокими скоростями резания. Необходимо отметить, что скорость резания не оказывает существенного влияния на шероховатость поверхности, но можно установить интервалы скоростей, где меняется характер стружко-  [c.27]


Для эффективного удаления стружки необходимы благоприятная толщина и ширина, завивание и сход в определенном направлении. На форму стружки значительное влияние оказывают режимы резания, главным образом, скорость подачи, которая зависит от глубины резания. Скорость резания также выбирается в зависимости от глубины. При равной толщине плохо завивается слишком широкая и слишком узкая стружка. С увеличением скорости резания стружка становится тоньше и длиннее, но в целом она оказывает меньшее влияние на форму стружки, чем подача. С точки зрения последующего удаления стружки наиболее благоприятны скорость подачи и глубина резания, а также низкая скорость резания.  [c.332]

Поскольку образовавшееся тепло пропорционально совершаемой работе, количество тепла зависит от рода и механических свойств материала обрабатываемой детали, геометрических параметров инструмента и режима резания. На процентное распределение тепла между стружкой, деталью и инструментом главное влияние оказывают механические и теплофизические свойства материала детали и скорость резания. В 1915 г. Я. Г. Усачев установил, что наибольшее количество тепла переходит в стружку, составляя при обработке стали от 60 до 85% от общего количества тепла. С увеличением скорости резания доля тепла, уходящего в стружку, увеличивается, а ее средняя температура растет. Исследования последних лет [25, 54] показали, что процентное распределение тепла сильно зависит от рода обрабатываемого материала (табл. 11).  [c.149]

Величина износа передней и задней поверхностей инструмента (ширина площадки износа и глубина лунки) зависит от времени работы инструмента, температуры резания и скоростей перемещения поверхности резания и стружки относительно задней и передней поверхностей. В результате обработки опытных данных, полученных при изучении влияния времени Т работы инструмента, глубины резания, подачи и скорости резания на ширину площадки износа и глубину лунки износа, были составлены эмпирические формулы, описывающие связь между величиной износа и факторами режима резания для периода нормального изнашивания инструмента. Формулы имеют вид  [c.178]

Влияние технологии обработки резанием. Уже первые исследования титановых сплавов показали, что в зависимости сгг характера их обработки резанием усталостная прочность может сильно изменяться. Было выявлено, что после абразивной шлифовки, особенно при форсированных режимах, титановые сплавы показывают наиболее низкие значения усталостной прочности и, наоборот, механическая обработка точением лезвийным инструментом при низких скоростях резания и снятием небольшой стружки при чистовой обработке с последующей ручной полировкой тонкой шкуркой дает самые высокие значения усталостной прочности. Разница в определяемых пределах выносливости для этих двух видов обработки для одних и тех же титановых сплавов может быть двух- и даже трехкратной. Большинство исследователей неблагоприятное влияние шлифовки на усталостную прочность объясняло созданием в поверхностном слое высоких растягивающих напряжений [40, 21 ].  [c.170]

Анализ работы стандартных концевых фрез показал, что поломки гидрозажима инструмента происходят под действием осевой составляющей силы резания, на величину которой определяющее влияние оказывает угол наклона винтовой канавки фрезы, равный 40. .. 45°. Нерациональная геометрия торцевых зубьев концевых фрез при осевой подаче на скоростных режимах приводит к пакетированию стружки и затруднению ее отвода из зоны резания, а интенсивные адгезионные явления способствуют налипанию частиц обрабатываемого материала на поверхностях заготовок и инструмента. Все это, в конечном счете, снижает стойкость фрез и увеличивает шероховатость обработанной поверхности,  [c.312]

Работоспособность алмазных шлифовальных кругов зависит не только от режима шлифования, обрабатываемого материала, характеристик круга, но и от состояния профиля круга и размещения режущих зерен. Средняя высота микропрофиля круга и площадь впадин оказывает существенное влияние на силы резания, трения, условия охлаждения и размещения стружки [1].  [c.137]

Обрабатываемость серого чугуна связана с его твердостью НВ обратной зависимостью. Наличие графита полезно, так как в его присутствии стружка получается крошащейся и давление на резец уменьшается. Влияние формы графита незначительно. Обрабатываемость оценивается стойкостью режущего инструмента, допустимыми скоростями резания, чистотой обработанной поверхности и т. п. Она улучшается по мере увеличения количества Фе в структуре, а также по мере повышения однородности структуры, т. е. при отсутствии в ней включений (ФЭ, карбидов), обладающих повышенной НВ. Оценку обрабатываемости часто производят по экономической скорости резания (Уж), определяющей допустимую скорость обработки при обеспечении определенной стойкости резца. Скорость Уэк зависит от режима обработки и твердости чугуна, причем с повышением твердости она, естественно, уменьш ается (условно принято, что Чэк=1,0 при НВ 140)  [c.61]

Элементы резания оказывают также большое влияние на тепловыделение и температуру резания. При более интенсивных режимах возрастает количество тепла, поступающее в стружку, деталь и инструмент.  [c.74]

Стружка отводится и перемещается по каналам под влиянием гидродинамических сил, действующих при обтекании стружки жидкостью. Необходимая для этого гидродинамическая сила создается посредством сообщения потоку СОЖ определенной скорости, которая зависит от ряда факторов вида и объема стружки, плотности и вязкости СОЖ, конструктивных параметров инструмента и др. Вид стружки и ее форма влияют на режим ее обтекания, на силу лобового сопротивления и подъемную силу. Объем стружки определяет объемную концентрацию р, которая при Р > 0,01 уже влияет на режим обтекания стружки, что необходимо учитывать при выборе скорости потока СОЖ [91. С увеличением плотности и вязкости СОЖ гидродинамические силы возрастают, но одновременно увеличиваются потери давления в системе подвода-отвода СОЖ, а следовательно, затраты энергии на стружко-отвод. От геометрии заточки и конструкции инструмента зависят размеры и форма стружки и связанные с этим размеры стружкоотводного канала, что в совокупности определяет стесненность движения и режим обтекания стружки. Влияние режима резания проявляется главным образом через вид, форму и объем снимаемой стружки. Установлено [32, 59, 61, 631, что скорость потока СОЖ должна быть в 5—8 раз больше скорости схода стружки с учетом ее усадки. Надежный отвод стружки обеспечивается за счет получения мелкой дробленой стружки, выбора соответствующих размеров поперечного сечения каналов и назначения необходимой скорости потока СОЖ (расхода Q). Обеспечение надежного стружкоотвода является сложной задачей, при решении которой приходится учитывать всестороннее влияние факторов и выбирать их оптимальные значения. Например, при выборе сечения канала для отвода стружки в инструменте необходимо учитывать, что при увеличении сечения канала создаются условия для беспрепятственного прохода стружки, но вместе с тем снижается жест-  [c.75]


Иткин М. Э- Исследование влияния режимов резания и геометрии инструмента на шаг элементов стружки и продолжительность их образования, Труды Казанского авиационного ин-та , вып. 52, 1960.  [c.101]

Теория резания рассматриваег общие закономерности процесса образования стружки, силы, действующие на инструмент, и их влияние на процесс резания тепловые явления, возникающие в процессе резания износ инструментов и пути повышения их стойкости влияние геометрии инструментов на проае резания влияние режимов резания на усилие р>езания и стойкость инструмента правила выбора смазочно-охлаждающей жидкос1и и способа подвода ее в зону резания и т д. Основоположниками научных исследований процесса резания металлов являются русские ченые. Профессор Петербургского горного института Иван Августович Тиме (1838—1920) в 1870 г. в своем труде Сопротивление металлов и дерева резанию изложил основные закономерности процесса стружкообразования, указал на прерывистый характер этого процесса, сделал важные выводы о причинах вибрации при резании и т. а.  [c.148]

Применение СОЖ выдвигают на первый план всякий раз, когда создают вновь или соверщенствуют существующие методы обработки резанием в целях обеспечения резкого повышения режима резания, что сопровождается соответствующим увеличением объема снимаемой стружки в единицу времени. Б этих случаях СОЖ, с одной стороны, играет роль фактора, снижающего интенсивность силовых и тепловых нагрузок на режущий инструмент и обрабатываемую деталь, а с другой — роль средства, позволяющего своевременно удалять из зоны резания образующуюся стружку и продукты износа инструмента. Таким образом, СОЖ является органическим элементом комплекса средств, обеспечивающего эффективную эксплуатацию металлообрабатывающего оборудования и освоение новых прогрессивных методов и технологических процессов обработки металлов. Являясь одним из наиболее важных переменных факторов состояния системы резания, они оказывают глубокое и много-стоооннее влияние на все показатели ее функционирования.  [c.8]

Прежде считали, что нарост оказывает благоприятное влияние на продолжительность работы резца, предохраняя режущую кромку от из1юса под влиянием трения и температуры. Результаты исследований показали обратное. Нарост оказывает неблагоприятное влияние на весь процесс резания значительно ухудщается качество поверхности изделия вследствие неспокойной работы инструмента, возникает неравномерная подача и в первую очередь преждевременное повреждение режущей кромки инструмента. При обработке твердым сплавом наросты чаще всего образуются из-за неправильного выбора режимов резания н прежде всего скорости резания — слишком низкой для соответствующего обрабатываемого материала и сечения стружки. При этом срок службы режущей кромки инструмента сокращается, так как она в результате срыва наростов выкрашивается. Установлено, что наростообразование уменьшается при повышении твердости обрабатываемого металла, увеличении переднего угла, применении смазочно-охлаждающих жидкостей и более тщательной доводке передней поверхности инструмента.  [c.492]

При сверлении же хрупких металлов и сплавов (серого чугуна, бронзы, латуни), как правило, образуется стружка коническо-спиральной формы (рис. 73). Это обусловлено особенностями самого процесса сверления и формообразования стружки при сверлении. В отличие от токарного резца основную работу при сверлении выполняют одновременно две режущие кромки в процессе резания участвуют также поперечная кромка и фасочные лезвия. На форму стружки оказывает существенное влияние то обстоятельство, что скорость резания в различных точках режущих кромок неодинакова, различны и углы резания для различных точек режущей кромки. Элемент стружки на периферии сверла образуется быстрее, чем у его центра. Размер и масса такой элементной стружки зависят от длины режущей кромки сверла и режимов резания. Теоретически максимальная длина коническо-сниральной стружки может быть определена из зависимости  [c.105]

Работа резания переходит в тепло. Со стружкой уходит 80 % тепла и более, остальное распределяется между резцом, заготовкой и окружающей средой. Под влиянием тепла изменяются структура и твердость поверхностных слоев резца и его режущая способность, изменяются также и свойства поверхностного слоя заготовки. Режимы резания для каждого случая могут быть рассчитаны по эмпирическим формулам с учетом свойств обрабатываемого материала, установленной нормативами стойкости резца, его геометрии и применяемого охлаждения, а также с учетом точ1 ост-ных параметров обработанной заготовки, особенностей станочного оборудования и оснастки.  [c.289]

Экспериментальные исследования остаточных и начальных напряжений после цилиндрического фрезерования стальных образцов и образцов из титановых сплавов показали, что из параметров режима резания наибольшее влияние на напряженное состояние ПС оказывает подача. Увеличение подачи с 0,08 до 0,80 мм/зуб сопровождается резким повышением толщины срезаемого слоя на участке траектории зуба фрезы, на котором происходит непосредственное образование ПС. Это приводит как к увеличению глубины проникновения начальных напряжений на стальных образцах с 0,2 до 0,28 мм, так и к росту их максимальных значений (со 180 до 340 МПа). Эпюры остаточных и начальных напряжений носят экстремальный характер с максимальным значением напряжений растяжения на глубине около 0,025 мм. На самой поверхности напряжения резко снижаются, доходя до О и переходя в область напряжений сжатия при малых подачах. Это можно объяснить тем, что с уменьшением подачи все большее влияние на формирование ПС оказывает радиус округления режущей кромки зуба фрезы. Как показывают расчеты, на участке округленной 1фомки снятие стружки происходит при отрицательных передних углах, доходящих до -40"...-60°, чго накладьшает свое влияние на конечную эпюру распределения начальных напряжений.  [c.172]

На кафедре продолжались исследования жесткости технологической системы. В результате исследований В. А. Скрагана было выяснено влияние сил трения в подвижных соединениях станков на упругие деформации технологической системы при переменных силах резания. Было установлено наличие сдвига фаз между силой резания и деформацией узлов металлорежущих станков, обусловленное действием сил трения. Сдвиг фаз меладу силой резания и деформацией технологической системы в ряде случаев приводит к значительному усложнению закономерностей копирования погрешностей обработки и к более сложным расчетам точности формы обрабатываемых деталей. Во многих операциях механической обработки значительное время занимают периоды врезания и выхаживания, характеризующиеся неустановившимся процессом резания (переменной толщиной стружки), который может протекать быстрее или медленнее в зависимости от жесткости технологической системы и режимов обработки. Изучение этих процессов позволило более полно охватить вопросы влияния жесткости технологической системы на точность и производительность механической обработки.  [c.348]


Смотреть страницы где упоминается термин Стружка Влияние режимов резания : [c.124]    [c.99]    [c.84]    [c.77]    [c.221]   
Прогрессивные режущие инструменты и режимы резания металлов (1990) -- [ c.59 ]



ПОИСК



403 — Режимы резани

403 — Режимы резани резания

Влияние Режимы

Режимы резания 455 — Влияние



© 2025 Mash-xxl.info Реклама на сайте