Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дробление мелкое

Для удовлетворительного отвода стружки необходимо в первую очередь применять режущий инструмент такой конструкции, который бы дробил стружку (рис. 229). Дробленая мелкая стружка занимает меньший объем, не задерживается на инструменте или на изделии и лучше отводится из рабочего пространства. В последнее время для измельчения снимаемой при точении стружки применяют вибрационный метод, который состоит в частых перемещениях резца его обычно называют кинематическим методом (рис. 230). Для дробления стружки при точении и сверлении прибегают к периодическому прекращению или изменению подачи резца или сверла, при этом стружка прерывается.  [c.454]


Мелкие куски шлака просыпаются через решетку над шлаковым каналом и увлекаются водой к багерному насосу. Крупный шлак падает с решетки на барабан и, попадая между зубьями барабана и дробильной щеки, измельчается. После дробления мелкие куски шлака сбрасываются в воду и увлекаются к багерному насосу.  [c.320]

Стружка дробленая (мелкая). . . 2,0 2,5  [c.498]

Первому диапазону соответствует разрушение из-за достижения больших деформаций, когда капля превращается в пленку и принимает форму парашюта навстречу потоку. Во втором диапазоне разрушение происходит за счет деформации и развития неустойчивости из-за ускорений на наветренной стороне капли. В первом и втором диапазоне после разрушения образуются капли в основном двух размеров 0,lповерхностного слоя и заканчивается дроблением за счет срыва и развития возмущений на наветренной стороне капли.  [c.260]

Критический размер дробящегося пузырька при резонансе колебаний моды и-го порядка оказывается меньше, чем при возбуждении низшей моды колебаний поверхности (л=2), Зависимость В В от п, рассчитанная при помощи (4. 2. 17), показана на рис. 41. Таким образом, когда критерий Вебера достигает своего максимального критического значения (4. 2. 7), размеры пузырьков, соответствующие этому значению Уе= Уе2 (т. е. при л=2), оказываются связанными с характеристическими частотами высших мод турбулентных пульсаций жидкости (т. е. при л > 2). Эта зависимость В (л) объясняется тем, что турбулентные пульсации жидкости, частоты которых совпадают с частотами собственных колебаний поверхности пузырьков при л > 2, вызывают дальнейшее дробление дисперсной фазы, что ведет к образованию более мелких пузырьков газа с размерами В Т 2.  [c.133]

Получить капли размером более нескольких сотен микрон сравнительно просто [29]. Общий метод получения мелких частиц базируется на принципе неустойчивости тонких струек или пелены жидкости, дробление которых приводит к образованию капель. Этот процесс подробно описан Маршаллом [522].  [c.145]

В результате оплавления участка ОШЗ исчезает зеренная структура, сформировавшаяся на этапе сварочного нагрева. Новые границы аустенитных зерен образуются при затвердевании расплавленного металла на оплавленном участке ОШЗ. Конечные размеры зерна зависят от степени оплавления ОШЗ. При наличии полностью расплавленной прослойки, затвердевание которой происходит после начала кристаллизации шва, границы зерен на этом участке ОШЗ представляют собой продолжение границ относительно крупных зерен в металле шва. В этом случае на участке ОШЗ, примыкающем к линии сплавления, наблюдается наиболее крупное зерно в ОШЗ. При частичном оплавлении границы зерен образуются по затвердевшим расплавленным прослойкам между частями оплавленных зерен, причем в зависимости от степени дробления ранее существовавших до оплавления зерен конечные размеры зерен могут быть соизмеримы с остальными зернами в ОШЗ или более мелкими. Во всех рассмотренных случаях возможно подрастание аустенитных зерен на этапе охлаждения. Об этом свидетельствует несовпадение границ новых зерен с оплавленными границами старых и более крупный размер новых зерен по сравнению со старыми. При анализе этого явления необходимо четко отличать оплавленные старые границы от действительных границ аустенитного зерна.  [c.514]


Экспериментальные наблюдения показывают, что при движении в маловязких жидкостях газовые пузыри, объем которых превышает 50 см , дробятся, распадаясь на более мелкие устойчивые пузырьки. Теории дробления газовых пузырьков не суш,ествует. Имеюш,иеся в этой области теоретические исследования показывают, что при безотрывном обтекании поверхность газовых пузырей сохраняет устойчивость. Этот вывод находится в хорошем соответствии с опытами, ибо сферические и эллипсоидальные пузыри, большая часть поверхности которых обтекается без отрыва потока, действительно не подвержены дроблению. В той области размеров пузырей, где происходит перестройка их формы от эллипсоидальной к сферическому сегменту (область 4, рис. 5.6), всплывание пузырей, как уже отмечалось, сопровождается пульсациями формы и траектории движения. Но пузыри в этой области размеров, как правило, не дробятся из-за стабилизирующего действия сил поверхностного натяжения, ибо кривизна поверхности таких пузырьков еще не слишком мала.  [c.224]

Из этих рассуждений следует, что дробление капель определяется некоторым значением числа Вебера. На основе опытных наблюдений принимают за условие дробления We, p = 7—10. Капля, теряющая устойчивость, сначала превращается в тор, а затем распадается на более мелкие. Очевидно, что скорость падения капли перед дроблением определяется (5.41). Это позволяет выразить пре-  [c.229]

Полимерная матрица следует закону Гука почти до момента разрушения, незначительные отклонения от закона упругости могут не приниматься во внимание. Как правило, удлинение матрицы при разрыве в несколько раз больше, чем удлинение волокна, поэтому качественная картина поведения такого композита в известной мере напоминает поведение композита с металлической матрицей при малом объемном содержании волокна возможно его дробление. Однако малая прочность матрицы по отношению к касательным напряжениям и довольно слабая связь между волокном и матрицей вносят свою специфику. В композите органическое волокно — эпоксидная смола, наоборот, разрывное удлинение смолы меньше, чем удлинение волокна. Ввиду малой прочности матрицы происходит ее дробление на мелкие частички, которые легко отваливаются, обнажая пучки волокон, которые уже относительно легко обрываются.  [c.703]

Процесс образования капелек в паровом объеме определяется принятой схемой подвода пароводяной смеси из парообразующих труб в барабан. При подаче пара выше зеркаЛа испарения капельки в паровом объеме образуются в результате дробления влаги, поступающей с паром в барабан из парообразующих труб. При подводе пароводяной смеси под зеркало испарения, как это выполнено у большинства современных энергетических котлов, образование мелких капель происходит вследствие разрыва оболочек единичных пузырей при выходе их из водяного объема барабана.  [c.158]

Камерные топки позволяют сжигать любое топливо —жидкое, газообразное и твердое пылевидное. Качество дробления (помола) твердого топлива определяется видом топлива. Угольная пыль или газ вдувается в топку струей воздуха через специальные горелки (рис. 3.7) и сгорает в ней во взвешенном состоя Ц[и, образуя горящий факел. Жидкое топливо распыливается с помощью механических, паровых или воздушных форсунок. В механических форсунках подогретое топливо под давлением 2 — 3 МПа пропускают через мелкие отверстия рас-  [c.152]

При малых скоростях легкой фазы, составляющих, например, для системы вода — воздух при комнатной температуре п атмосферном давлении менее 1 м/с, основная доля транспортируемых капель генерируется за счет разрыва оболочек. Относительно крупные капли, генерируемые за счет дробления жидкости струями пара, кольцевых волн и выбрасываемых ими столбиков жидкости и другими процессами того же типа, подскакивают относительно невысоко. Вместе с тем небольшая кинетическая энергия пара приводит к малой вероятности генерирования за ее счет мелких капель, скорость витания которых была бы близка к невысоким скоростям газового, потока. Поэтому можно считать, что в этой зоне скоростей основное количество транспортируемых капель действительно генерируется за счет разрыва оболочек.  [c.286]


Одним из определяющих факторов в работе смесительных теплообменников является поверхность соприкосновения. G этой целью жидкости обычно разбрызгиваются на мелкие капельки. Однако степень дробления в каждом случае должна выбираться в соответствии с конкретными условиями работы аппарата. Чем мельче капли, тем больше поверхность соприкосновения, но вместе с этим меньше и скорость падения капли. При этом и скорость газа должна быть мала в противном случае капли будут лишь витать или уноситься с воздухом. Поэтому степень разбрызгивания воды должна быть в соответствии со скоростью воздуха и производительностью аппарата.  [c.247]

Одним из определяющих факторов в работе смесительных теплообменников является поверхность соприкосновения. С этой целью жидкости обычно разбрызгиваются на мелкие капельки. Однако степень дробления в каждом случае должна выбираться в соответствии с конкретными условиями работы аппарата. Чем мельче капли, тем больше поверхность соприкосновения, но вместе с этим меньше и скорость падения капли. При этом и скорость газа  [c.265]

Дробилки ударного действия широко применяют для мелкого, среднего и крупного дробления пород разной крепости. Однако препятствием к расширению области применения этих дробилок служит большой расход металла в результате интенсивного изнашивания, особенно при дроблении крепких абразивных пород. Дробилки ударного действия наиболее эффективно работают при высоких скоростях соударения, но при этом износ еще больше увеличивается.  [c.26]

Судя по полученным данным, дробление абразива не сопровождается полным прекращением увеличения объема лунок. Суммарный объем лунок в этом случае увеличивается в результате образования под действием осколков раздробленного абразивного зерна более мелких лунок. Можно полагать, что до определенного значения энергии удара число осколков, образующихся при дроблении абразивного зерна, увеличивается, а следовательно, увеличивается общий объем образующихся при этом лунок.  [c.45]

В последние годы разработан вакуумно-эжекционный метод обработки воды для удаления СОг, основанный на непрерывном объемном вскипании растворенных газов при интенсивном дроблении воды на мелкие капли в потоке воздуха, эжектируемого струей воды [61.  [c.106]

При такой высокой степени деформации происходит дробление зерен аустенита на очень мелкие (1,5—2 мкм).  [c.316]

Основное значение для качества очистки имеет выбор рабочей среды с абразивным материалом. Чем крупнее размеры абразивных зерен, тем сильнее их воздействие. Для получения шлифованных или полированных поверхностей применяются абразивы, полученные отливкой с последующим дроблением и сортировкой. Детали хрупкие или с режущими кромками следует обрабатывать только мелким абразивом или смесью мелкого и крупного. Однако в данном случае необходимо поддерживать равномерность рабочей смеси путем периодического изменения направления вращения.  [c.132]

Строительные растворы состоят из вяжущего вещества, воды и мелкого заполнителя (песка, дробленого шлака и т. п.). Состав растворов различен — от 1 2 до 1 7. Прочность 2—400 кГ/см . Для подземных частей зданий применяют смешанные известково-цементные растворы.  [c.517]

При дроблении вальцы связаны зубчатой передачей и ведущий валец вращается в 3 раза скорее ведомого. При надобности в мелком помоле используется дека. Параметры зернодробилки  [c.202]

Факельно-слоевые топки с пневмомеханическим забрасывателем и ленточной цепной решеткой обратного хода (ПМЗ-ЛЦР) рекомендуются для сжигания каменных углей марок Г, Д, ПЖ, ПС, СС и Т, а также различных бурых углей под котлами производительностью выше 1,8 кг сек. Содержание мелких фракций (до 6 мм) допускается до 70%. Угли должны проходить обязательное дробление до куска размером 20—45 мм (оптимально 20—30 мм).  [c.85]

Следует отметить весьма существенную зависимость эффективности влагоудаления от окружной скорости рабочего колеса и геометрических углов входа и выхода лопаток. Так, в опытах БИТМ, проведенных на ступенях средней веерности, был обнаружен рост коэффициента влагоулавливания ip при увеличении скорости вращения рабочего колеса. Совершенно иные зависимости были получены в ЛПИ при испытании ступени большой веерности (значения коэффициентов влагоулавливания в зависимости от скорости лопаток приведены на рис. 13-21. Как видно из графиков, с ростом окружной скорости в пределах от 60 до 200 м1сек коэффициент il снижается с 50 — 60 до 5—10%. Резкое уменьшение сепарации влаги при больших окружных скоростях объясняется авторами дроблением капель, попадающих на поверхность лопаток, в результате чего образовавшиеся при дроблении мелкие капли увлекаются паровым потоком и проходят межлопаточный канал, не % соприкасаясь со стенками рабочих лопаток.  [c.375]

Легкие окоренные и др. Сельскохозяйственные продукты, формовочная земля, щепа, уголь дробленый, мелкие (пакетированные) грузы и др. 2, 2М, 2П Нити основы и уткй из комбинации полиэфирного и х/б волокна или из синтетического волокна 36 39 4-2 44 48  [c.279]

В соотношении (4. 3. 17) считается, что радиус пузырька может принимать определенные дискретные значения В., что соответствует экспериментальному методу регистрации пузырьков различных размеров [50]. Если интервал измеряемых радиусов ДД мал, то приближенно pv (Д) можно считать непрерывной функцией распределения. На рис. 43 показано типичное распределение пузырьков газа по размерам фу (Д), полученное экспериментальным путем в [50]. Проанализируем вид кривой (Д). Относительный максимум фу (Д) в области малых значений Д объясняет тот факт, что при дроблении каждого крупного пузырька газа по1йимо двух пузырьков относительно меньшего размера образуется большое количество очень мелких пузырьков [51]. Эти мелкие газовые пузырьки являются результатом дробления перемычки, соединяющей два основных пузырька перед их окончательным разделением (см. рис. 44). Два максимума в окрестности Д р вместо одного являются следствием регистрации небольшого количества пузырьков, недостаточного для статистической обработки.  [c.138]


Режим взрывного дробления, реализующийся при значительных числах Вебера и наблюдавшийся в достаточно силт.пых ударных волнах. В этом случае, случае сильного возде гствня потока на каплю, обдирка практически не наблюдается, исходная капля сразу распадается иа большое число мелких каиелек.  [c.167]

Крайним проявлением потери сферической формы пузырьков является их дробление. Реализация дробления ] ардинально влияет на структуру волны в пузырьковой среде. В частности, интенсивное дробление исходных пузырьков па мелкие, происходящее в достаточно сильных волпгх, как правило, уже при первом сжатии пузырьков на переднем фронте волны приводит к тому, что в релаксационной зон волны находятся мелкие пузырьки, имеющие много меньшие, чем у исходных пузырьков, период пульсаций и время охлаждения. Это во много раз сокращает толщину релаксационной зсны волны. В результате может стать достаточной равновесная схема смеси, сводящаяся к модели идеальной баротронно сжимаемой жидкости с заранее определяемым (см. (1.5.26)) уравнением состояния р(р).  [c.107]

Топливо, поступающее на ТЭС, подается в приемо-разгрузоч-ное помещение, обогреваемое в холодное время трубчатыми излучателями или с помощью горячего воздуха. Топливо из вагонов 1 (рис. 18) опрокидывателями 2 ссыпается в приемные бункера 3, из которых питателями 4 и конвейерами 5 подается на ленточный конвейер 6, связанный с узлом пересыпки и дробильным помещением. В конце конвейера 6 расположены магнитные мёталлоуло-вители 7 и магнитный барабан 8 конвейера. Отделенный от топлива металл сбрасывается в бункер 9. Крупные куски топлива поступают в дробилки //, а мелкие, отделенные на грохоте 10, минуют дробилку и смешиваются с раздробленными кусками перед конвейером. Это позволяет уменьшить расходы энергии на дробление. Нераздробленные древесные включения (щепа) по наклонной решетке грохота 12 попадают на щепоуловители 13 и далее конвейером 14 удаляются из топливного тракта станции. Топливо поступает на распределительный конвейер котельного цеха. Затем с помощью подвижных разгрузочных тележек или опускных разгрузочных устройств 15 топливо подается в бункера 16 сырого топлива отдельных котлов. В дальнейшем из этих бункеров топливо направляют в систему пылеприготовления.  [c.46]

В процессе подготовки твердого топлива к камерному сжиганию из топлива, поступающего в котельную кусками различных размеров, с помощью грохотов, щепоуловптеля (рис. 3-20,а) и магнитных сепараторов (рис. 3-20,6) отделяют мелкое топливо, щепу-древесину и попавшие стальные предметы (см. гл. 7). Обычно чем выше влажность топлива, тем более крупные куски топлива могут быть поданы в мельницу. Это предупреждает застревание и налипание мелких частиц по тракту то-пливоподачи от дробилок до мельниц. Из бункеров котельной дробленое (до размера куска 6—25 мм) топливо поступает в пылеприготовительную установку, где оно размалывается в угольную пыль.  [c.136]

На рис. 46, а показана индивидуальная схема пылеприготовле-ния с промежуточным бункером. Сырое дробленое топливо из бункера 1, пройдя через автоматические весы 2, поступает в питатель мельницы 3, регулирующий поступление топлива в мельницу 4. Шаровая барабанная мельница изнутри выложена броневыми плитами и на V4 объема заполнена стальными шарами диаметром 35—40 мм. Частота вращения барабана мельницы — 16— 25 об/мин. Шары, пересыпаясь, истирают уголь в пыль. В мельницу по воздуховоду 12 попадает горячий воздух с температурой 250—400° С. Подсушенное размолотое топливо горячим воздухом направляется в сепаратор 5, где крупные частицы топлива отделяются и ссыпаются в мельницу, а мелкая пыль поступает в циклон 6, в котором разделяются пыль и воздух. Пыль попадает в бункер 7, а воздух вентилятором 9 сбрасывается в пылеугольную горелку 10 топки Ц. Этот воздух является первичным. В трубопровод с первичным воздухом шнековым питателем 8 добавляется необходимое количество пыли из бункера 7.  [c.119]

Достаточно плотная связка монолитного абразива препятствует полному внедрению отдельных более твердых зерен в поверхность соударения. В то же время твердые зерна монолитного абразива, окруженные связкой, при каждом очередном соударении постепенно разрушаются, дробясь на более мелкие осколки. При дроблении часть объема твердого зерна остается в своем гнезде , другая часть может падать на приработанную поверхность абразива, подвергаясь при очередном соударении дальнейшему дроблению, поражая при этом поверхность изнашивания и образуя на ней лунки. В результате многократного соударения поверхности изнашивания с монолитным абразивом в зоне контакта образуется сравнительно ровная поверхность, на которой постепенно формируется слой из раздробленных абразивных частиц. Если очистка зоны соударения неудовлетворительная, то абразивные частицы этого слоя подвергаются полному дроблению, а толщина слоя может увеличиваться в результате действия новой порции разрушаемого абразива при каждом очередном соударении. При повторных многократных соударениях этот слой может уплотниться настолько, что приобретет роль третьего тела. При хорошей очистке зоны контакта с поверхностью изнашивания при каждом очередном соударении взаимодействуют новые слои монолитного абразива, разрушение которых сопровождается ударноабразивным изнашиванием.  [c.73]

При обработке хрупких металлов (бронзы, чугуна и др.), дающих мелкую отлетающую стружку, а также при дроблении стальной стружки в процессе точения применяются защитные устройства индивидуальные щитки, прозрачные быстроустанавливаемые на рабочую позицию экраны или специальные стружкоотводчики.  [c.307]

В описываемый период металлурги все большее внимание стали уделять подготовке к плавке основного материала доменного производства — железной руды. Уже издавна использовали такие процессы, как дробление крупнокусковых руд, их обжиг и промывку. Помимо этого, в конце XIX в. начали применять окусковывание мелких и пылеватых руд методом брикетирования, а также сортировку железной руды по крупности кусков и химическому составу. В начале XX в. в производстве внедряется процесс агломерации, заключающийся в окусковывании мелких руд и колошниковой пыли, которые спекали в специальных агломерационных устройствах.  [c.109]

При внешнем обтекании капель относительная скорость газа близка к скорости витания, так как при большей скорости происходит их дробление на более мелкие. Поэтому число Рейнольдса не может быгь большим. Например, для капель воды при той же  [c.28]

Как видим, зависимость Gr от Р является линейной при прочих равных условиях. Для данного случая она изображена на рис. 5-7. Эксиериментальные исследования, выпо.дненные на ЦТА при различных скоростях газа, размерах сопел, сопротивлениях и давлениях в аппарате, показывают, что уже при давлении Р 0,75-Ю Па процесс в аппарате близок к теоретическому (кривая 2 на рис. 5-7). При этом давление воздуха на входе в аппарат было атмосферным, т. е, весь перепад практически использовался ( срабатывался ) в соплах, а турбины в установке не было. С увеличением давления удельный расход воздуха g возрастает в большей степени, чем давление, так как условий тепло-и массообмена в аппарате, в частности турбулентности и скорости газа, видимо, недостаточно для дробления жидкости на мелкие частицы (т. е. для образования соответствующей поверхности контакта и уменьшения тепловых и диффузионных сопротивлений в пограничных слоях, чтобы процесс тепло- и массообмена стал близок к идеальному). Таким образом, отклонение от идеального объясняется недостаточной интенсивностью процесса тепло- и массообмена.  [c.139]


Смотреть страницы где упоминается термин Дробление мелкое : [c.55]    [c.1042]    [c.131]    [c.225]    [c.165]    [c.166]    [c.166]    [c.48]    [c.109]    [c.61]    [c.116]    [c.123]    [c.305]    [c.529]   
Металлургия черных металлов (1986) -- [ c.23 ]



ПОИСК



Дробилки для мелкого дробления

Дробилки для среднего и мелкого дробления

Дробление

Конусные дробилки для среднего и мелкого дробления

Конусные дробилки мелкого дробления

Обработка эксцентриков конусных дробилок среднего и мелкого дробления



© 2025 Mash-xxl.info Реклама на сайте