Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевые сплавы — Обработка

Литые детали из чугуна должны подвергаться старению, детали из алюминиевых сплавов — термической обработке до твердости 60. .. 100 НВ.  [c.646]

Термическая обработка алюминиевых сплавов. Упрочнение алюминиевых сплавов термической обработкой возможно лишь в тех  [c.427]

Алюминиевые сплавы (свойства, обработка, применение) Справочник/Пер. с нем. М. Металлургия,  [c.515]

Флюсы (для пайки алюминиевого сплава) удаляются промывкой горячей и холодной водой при условии последующей обработки в растворе хромового ангидрида. Флюсы на основе буры образуют на поверхности твердую корку. Их удаляют механическим путем или погружением деталей в горячую воду. Паяные швы на алюминиевых сплавах подвергаются обработке металлической щеткой и вторично промываются от флюсов, могущих остаться в порах 124  [c.124]


Эксплуатационные свойства алюминиевых сплавов после обработки с применением СПД зависят от исходной микроструктуры, изменения ее при нагреве и выдержке при температуре деформации, под влиянием СПД и при последующей термической обработке. Для того чтобы выделить чистое влияние СПД, необходимо экспериментально оценить влияние каждого из этих факторов на свойства алюминиевых сплавов. Для этого часть образцов обрабатывали по схеме нагрев до температуры СПД, выдержка при ней, рав-  [c.171]

На основе практического опыта выведено соотношение между плотностью тока и напряжением его. Соотношение это может быть проверено для любых условий. Для этого на анодную штангу ванны завешивают детали точной геометрической формы (пластины или цилиндры), изготовленные из определенной марки сплава. Установив силу тока на основе точного подсчета поверхности детали и расчета плотности тока, замеряют напряжение на штангах ванны, обусловливающее эту силу тока, а следовательно, и плотность тока. Надо только иметь в виду, что замеру подлежит напряжение, установившееся через 1,5—2 мин. после включения тока, так как в первый момент голая поверхность детали оказывает току незначительное сопротивление, не соответствующее дальнейшему процессу анодного оксидирования. В табл. 1 приведены для различных алюминиевых сплавов время обработки, плотность и напряжение тока.  [c.30]

Процесс старения имеет особенно большое значение для алюминиевых сплавов, термическая обработка которых основана на явлении дисперсионного твердения — выпадении из раствора очень мелких (дисперсных) кристалликов различных химических соединений.  [c.190]

Деформируемые алюминиевые сплавы подвергают обработке давлением прокатке, прессованию, волочению, ковке и штамповке (состав, свойства и применение этих сплавов приведены в табл. 15),  [c.140]

Для сушки стержней применяют плоские и фасонные сушильные плиты (рис. 27). Их изготовляют из чугуна, стали и алюминиевых сплавов. Перед обработкой резанием сушильные плиты подвергают термической обработке.  [c.34]

Длительность нагрева алюминиевых сплавов под обработку давлением  [c.186]

СОЖ для лезвийной обработки заготовок из алюминиевых сплавов. При обработке заготовок из алюминиевых сплавов велика вероятность образования на режущих кромках инструмента нестабильного нароста, что оказывает значительное влияние на качество поверхностного слоя обработанных заготовок или деталей и особенно на параметры шероховатости поверхности. Учитывая, что в настоящее время обработка заготовок из алюминиевых сплавов выполняется, как правило, на высоких скоростях резания, соизмеримых с рабочими скоростями шлифования, увеличивается теплосиловая напряженность процесса обработки. В связи с этим при выборе СОЖ для обработки резанием заготовок лезвийными инструментами стремятся выбрать составы, обеспечивающие минимальную вероятность наростообразования и хорошее охлаждающее действие. При  [c.267]


Дегазацию алюминиевых сплавов осуществляют обработкой ультразвуком. При прохождении ультразвуковых волн в расплаве 368  [c.368]

При электролитической обработке происходит пассивация поверхности, т. е. удаление неметаллических материалов, вызывающих коррозию. По этой причине впоследствии металл со.храняет блестящую поверхность и не корродирует. Электролитическим методом можно обрабатывать следующие. металлы углеродистые стали и их сплавы (нержавеющая сталь), медь и ее сплавы, никель и его сплавы, алюминиевые сплавы. После обработки этих металлов иа поверхности детали не образуется пассивирующей пленки подобно той, которая образуется на поверхности из нержавеющей стали. Поэтому с целью предохранения деталей от коррозии их подвергают гальваническому покрытию.  [c.87]

Процессы термической обработки стали были рассмотрены на основе сплавов Ре — С. Для алюминиевых сплавов медь — основной второй элемент, и поэтому структурные превращения при термической обработке рассмотрены на примере сплава А1 — Си. Это тем более очевидно, что введение других легирующих элементов, кроме или вместо меди, не вносит принципиальных  [c.568]

ВЛИЯНИЕ СОСТАВА АЛЮМИНИЕВЫХ СПЛАВОВ НА ПРОЦЕССЫ, ПРОИСХОДЯЩИЕ ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ  [c.575]

Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть неупрочняемые и упрочняемые термической обработкой.  [c.17]

К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы А1—Си—Mg с добавками некоторых элементов (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины (Д16—Д18) содержат 3,8—4,8 % Си, 0,4— 1,8 % Mg, а также 0,4—0,9 % Мп, который повышает коррозионную стойкость сплавов. После термической обработки (закалка и естественное старение) эти сплавы имеют высокую прочность и удлинение. Ковочные сплавы (АК6—АК8) содержат 1,8—4,8 % Си,  [c.17]

Тонкое (алмазное) точение применяется главным образом для отделочной обработки деталей из цветных металлов и сплавов (бронзы, латуни, алюминиевых сплавов и т. п.) и отчасти для деталей из чугуна и стали. Объясняется это тем, что шлифование цветных металлов знач тельно труднее, чем стали и чугуна, вследствие быстрого засаливания шлифовального круга. Кроме того, обработка алмазными резцами стальных и чугунных деталей пока еще значительно менее эффективна, чем деталей из цветных металлов и сплавов.  [c.188]

Термическая обработка алюминиевых сплавов  [c.322]

Деформируемые алюминиевые сплавы, упрочняемые термической обработкой  [c.327]

Одним из наиболее эффективных способов защиты от КР высокопрочных алюминиевых сплавов является обработка поверхности дробью. Наибольщий эффект достигается при использовании этого метода в комбинации с защитными покрытиями. Данный способ может быть использован для восстановления нарущений ИЛИ при изготовлении изделий [247].  [c.302]

Выбор конкретного способа подготовки поверхностей определяется материалом деталей, исходным состоянием их поверхностей, характером производства. Для штучного и мелкосерийного производства необходимо предусмотреть операции правки, рихтовки, обезжиривания, травления или зачистки, механической обработки. В условиях крупносерийного и массового производства, где обеспечивается высокое качество исходных материалов в заготовительном и штампопрессовом производствах, подготовку поверхностей перед сваркой можно не делать. Исключение составляют детали из алюминиевых сплавов, требующих обработки поверхности не ранее чем за 10 ч до сварки.  [c.288]

И конструкции тепловой изоляции корпуса изготовляются в цехе. Необходимый для этого листовой и профильный материал из алюминиевых сплавов перед обработкой расконсервируется паром, в водяной ванне или ветошью, смоченной в уайт-спирите или скипидаре, с последующей протиркой металла опилками и сухой ветошью. Стальной материал перед обработкой очищается от окалины, ржавчины и грязи механическими или ручными щетками. Очистка оцинкованных поверхностей производится протиркой наждачной бумагой и ветошью. После очистки материал выправляется, размечается согласно чертежам или шаблонам, снятым с места и поступает на изготовление деталей конструкций изоляции. Изготовленные детали могут иметь отклонения прямолинейных кромок от контрольных кернов не более 1 мм смещение центров просверленных отверстий от линий разметки — не более 1 мм отклонения диаметров отверстий не более 0,3 мм — для отверстий диаметром 3—6 мм и 0,36 мм для отверстий диаметром свыше 6 до 10 мм отклонение длины угольников от заданной не более 2 мм отклонение размеров деталей длиной и шириной до 1 л не более 1 мм, а свыше 1 м—1,5—2 мм. Сборка стальных каркасов конструкций изоляции производится при помощи электроду-говой сварки, а из алюминиевых сплавов при помощи контактных сварочных машин типа МТП-150 и МТП-200 с прерывателями ПИТ-100. Изготовленные каркасы щитов, рамки и щиты зашивки конструкций изоляции могут иметь отклонения размеров от заданных по длине конструкции не более 5 мм, а по ширине не более 3 мм разность диагоналей прямоугольных конструкций должна быть ие более 5 мм смещение ребер жесткостей внутри щитов и вырезов в боковых стенках допускаются не более 3 мм бухтиноватость поверхности щитов не должна превышать 7 мм на 1 пог. м щиты при легком нажатии на них рукой не должны издавать шума.  [c.215]


Из освоенных промьииленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.  [c.232]

Широкое распространение получила кислородная резка стали. Однако кислородная резка обладает ограниченными возможностями обработки цветных металлов. Наиболее быстро развиваются сейчас электрические методы резки металлов, особенно возникший в последнее время процесс, комбинирующий электрический нагрев с действием струи газа, — газоэлектрическая резка. Эти методы позволяют успешно производить операции чистовую разделительную резку алюминиевых сплавов, поверхностную обработку спла-  [c.3]

Упрочняющая термическая обработка алюминиевых сплавов основана на изменении растворимости соединений в основном алюминиевом растворе, а конкретно для сплавов А1 — Си на изменении растворимости соединения СиАЬ в алюминии.  [c.568]

Дюралюминий — наиболее рас1прост1раненный представитель группы алюминиевых сплавов, применяемых в деформированном виде н упрочняемый термической обработкой. Он содержит около 4% Си н 0,5% Mg, а также марганец 11 железо. Дюралюминий — сплав, по крайней мере, шести компонентов алюминия, меди, магния, марганца, кремния и железа, хотя основными добавками являются медь и магний. Поэтому указанный сплав мо >кно причислить к сплавам системы А1 — Си — Mg. Кремш1Й п железо являются постоянными примесями, попадающими и сплав вследствие применения недостаточно чистого алюминия.  [c.583]

Термическая обработка литых деталей из алюминиевых сплавов существенно улучшает механические свойства этих сплавав. Предел прочности и относпте 1Ы1ое удлинение литейных алюминиевых сплавов после термической обработки (закалка с последующим искусственным старением) угаелпчипают-ся п два раза.  [c.590]

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. К деформируемым алюминиевым сплавам, не упрочняемым термической обработкой, относятся сплавы системы А1—Мп (AiMh), содержащие до 1,6 % Мп, и сплавы системы А1—Mg (ЛМг), содержащие до 5,8 % Mg. Эти сплавы обладают высокой пластичностью и невысокой прочностью.  [c.17]

Каждый металл и сплав имеет свой строго определенный температурный интервал горячей обработки давлением. Например, алюминиевый сплав АК4 470—350 °С медный сплав БрАЖМц 900—750 °С титановый сплав ВТ8 1100—900 "С. Для углеродистых сталей температурный интервал нагрева можно определить по диаграмме состояния (см. разд. 1) в зависимости от содержания углерода. Например, для стали 45 температурный интервал 1200—750 °С, а для стали УЮ 1100—850 °С.  [c.60]

Бурное развитие всех отраслей народного хозяйства вызывает необходимость все большего применения специальных сталей, алюминиевых сплавов и других цветных и активных металлов. Разделка этих металлов является одной из наиболее трудоемких и наименее производительных операций. Также затруднена и сварка некоторых из них. Поэтому возникла необходимость разработки и применения такого способа резки указанных металлов, при котором наряду с высоким качеством реза обеспечивалась бы высокая производительность. Исследования и практика показали, что это может быть достигнуто при арименении газоэлектрической (плазменной) обработки металлов.  [c.133]

Скорость резания в зависимости от рода обрабатываемого материала составляет от 100 до 1000 м1мин, а иногда и выше. При обработке алмазными резцами деталей из цветных металлов применяются более высокие скорости при обработке деталей из чугуна и стали, а также при обработке деталей как из черных, так и из цветных металлов резцами, оснащенными твердыми сплавами, применяются меньшие скорости. Для точения деталей из бронзы применяется скорость резания 200—300 м/мин для деталей из алюминиевых сплавов — 100(1 м1мин и выше при подаче 0,03—0,1 мм/об и глубине резания 0,05—0,10 -мм.  [c.188]

После реконструкции, проведенной с целью устранения недостатков, выявившихся при эксплуатации, завод-автомат выполняет автоматически в определенной последовательности следующие стадии производственного процесса на позициях / — загрузка чушек алюминиевого сплава 2—плавление, рафинирование и очистка сплава от шлака 3 — кокильная отливка 4 — отрезка литников и возврат их в плавильную печь для переплавки 5 — загрузка контейнеров поршнями 6—термическая обработка 7 — автоматический бункер 8 — возврат контейнеров 9 — обработка базовых поверхностей (одновременно у двух деталей) 10 — черновое растачивание и зацентровка (одновременно четырех деталей) 11 — черновое обтачивание (одновременно четырех деталей) 12 — фрезерование горизонтальной прорези (одновременно у четырех деталей) 13 — сверление десяти смазочных отверстий в каждой детали (одновременно у четырех деталей) 14 — чистовое обтачивание (одновременно четырех деталей 15 — разрезание юбки и срезание центровой бобышки (одновременно у четырех деталей) 16 — подгонка веса поршней (одновременно у двух деталей) путем удаления лишнего мет 1лла на внутренней стороне юбки 17 — окончательное шлифование на автоматическом бесцентрово-шлифовальном станке (одновременно четырех деталей) 18 — мойка 19 — автоматический бункер 20 — обработка отверстий под поршневой палец (тонкое растачивание отверстий растачивание канавок под стопорные кольца развертывание отверстий) 21 —мойка 22 — контроль диаметров и конусности юбки и сортировка на размерные группы 23 — контроль формы и размеров отверстий под палец и сортировка на размерные группы 24 — покрытие поршней антикоррозийной смазкой (консервация) 25 — завертывание в водонепроницаемую бумагу (пергамент) 26 — набор комплекта поршней, формирование картонной коробки, заклейка ее и выдача.  [c.467]



Смотреть страницы где упоминается термин Алюминиевые сплавы — Обработка : [c.63]    [c.174]    [c.180]    [c.170]    [c.91]    [c.18]    [c.150]    [c.18]    [c.11]    [c.569]    [c.577]    [c.578]    [c.142]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.319 , c.346 ]



ПОИСК



Алюминиевые сплавы вторичные термическая обработка

Алюминиевые сплавы, термическая обработка

Влияние состава алюминиевых сплавов на процессы, происходящие при термической обработке

Высокопластичные алюминиевые сплавы, не упрочняемые термической обработкой

Деформация алюминиевых сплавов стали при термической обработк

Деформируемые алюминиевые сплавы, упрочняемые термической обработкой

Жаропрочные сплавы алюминиевые аустенитные, тсрмомеханич. обработк

Литье алюминиевых сплавов из легированной стали фасонное — Термическая обработка — Режимы

Напильники вращающиеся для обработки стали и алюминиевых сплавов

ОБРАБОТКА ТЕРМИЧЕСКА сплавов алюминиевых деформируемых

ОБРАБОТКА ТЕРМИЧЕСКА сплавов алюминиевых литейны

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового литья 613 — 616 для электрошлакового

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового расплавления металла

Обработка сплавов

Обработка термическая отливок высокоточных из алюминиевых сплавов — Стабилизирующие режимы

Обработка термическая отливок высокоточных из алюминиевых сплавов — Стабилизирующие режимы из алюминиевых сплавов 447, 448 Закалка 448, 449 — Закалка с последующим искусственным старением

Обработка термическая сплавов также под их названиями, например: Сплавы алюминиевые

Принципы термической обработки алюминиевых сплавов

Распределение из деформируемых алюминиевых сплавов - Термическая обработка - Режим

Режимы термической обработки сплавов на алюминиевой основе

Рекомендуемые режимы термической обработки деформируемых алюминиевых сплавов

Силумина и литейного алюминиевого сплава дуралюмина и алюминия Штучное время (без установочного) при обработке торцовыми фрезами из твердого сплава

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы алюминиевые для холодной обработки

Сплавы железо-никель-алюминиевые для постоянных магнитов состав, свойства, технология изготовления и термическая обработка

ТЕХНОЛОГИЧЕСКИЕ МАРШРУТЫ ОБРАБОТКИ — ТОЧНОСТ сплавов алюминиевых 336 — Режимы

Теплоемкость, коэффициенты теплопроводности и линейного расширения алюминиевых сплавов малолегированных и не упрочненных термической обработкой

Термическая обработка алюминиевых и магниевых сплавов

Термическая обработка алюминиевых сплаво

Термическая обработка бронз алюминиевых сплавов алюминиевых деформируемых — Режимы

Термическая обработка заготовок и деталей из алюминиевых сплавов

Термическая обработка отливок из алюминиевых и магниевых сплавов

Термическая обработка сплавов алюминиевых деформируемы

Термическая обработка сплавов алюминиевых деформируемых — Режимы

Термическая обработка сплавов алюминиевых литейны

Термическая обработка сплавов алюминиевых литейных — Виды 76, 78 Влияние на типичные механические

Термическая обработка сплавов алюминиевых литейных — Виды 76, 78 Влияние на типичные механические свойства сплавов

Термическая обработка сплавов алюминиевых литейных — Рекомендуемые режимы

Термическая обработка сплавов алюминиевых системы А1 + прочие компоненты — Термическая обработка — Режимы

Термическая обработка ш.швок из алюминиевых сплавов

Термическая обработка, дефекты металлов алюминиевых сплавов



© 2025 Mash-xxl.info Реклама на сайте