Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв местный

Как уже было сказано выше, к местным сопротивлениям относятся различные фасонные участки трубопровода или русла (колена, тройники, задвижки и др.), в которых наблюдается неравномерное движение жидкости. В местах резкого изменения живого сечения или направления потока происходит отрыв по-  [c.85]

Рассмотрим подробнее местное сопротивление в виде внезапного расширения трубы (рис. 83). Наблюдения показывают, что при выходе струи из узкой части трубы образуется отрыв потока от стенок, и пространство между струей и стенками заполняется вихрями. На некотором расстоянии 1р струя полностью расширяется, но может иметь в сечении 2 —2 резко неравномерную  [c.184]


Из других видов местных сопротивлений теоретическое выражение коэффициента сопротивления удается получить для случая резкого сужения потока (рис. 86). Непосредственно за входом в узкую часть трубы образуется отрыв и кольцевая вихревая область ВО. Транзитная струя благодаря инерции сжимается, образуя сжатое сечение 5 , а затем снова расширяется, занимая все сечение трубы. Как показывают измерения, основная часть потерь сосредоточена на участке расширения потока за сечением 5(,.  [c.188]

Тонкая игла перед тупым телом. Такая игла, вызывая отрыв потока, способствует снижению сопротивления и теплопередачи при больших сверхзвуковых скоростях. Рассмотрим механизм этого явления. Отсоединенный почти прямой скачок уплотнения перед затупленным телом (рис. 1.12.4,а) может изменить свою форму, если перед таким телом установить тонкую иглу (рис. 1.12.4,6). Поток может оторваться на игле и образовать область течения клинообразного или конусообразного типа (в зависимости от того, является ли тело плоским или цилиндрическим). Под влиянием такого отрывного течения изменится форма головного скачка уплотнения от почти прямого до косого, что обусловит снижение лобового сопротивления и теплопередачи в точке полного торможения затупленной поверхности. Однако в контактной области скачка и поверхности иглы могут возникать высокие местные тепловые потоки, что несколько снижает эффективность использования иглы.  [c.106]

Потери при слиянии в тройнике происходят за счет турбулентного смешения двух потоков и потерь на поворот, иногда вызывающих местный отрыв (рис. XIV. 14, в). При этом струя с большими скоростями теряет часть своей кинетической энергии, в то время как струя с малой кинетической энергией ее приобретает.  [c.385]

Наклонные прямолинейные участки соответствуют линейному закону сопротивления (зона /), криволинейные участки — переходной области (зона //), а горизонтальные прямые — квадратичному закону (зона ///). Характер кривых = [(Яе) определяется моментом возникновения отрыва потока, образования вихрей и их дальнейшим развитием. Чем сильнее деформируется поток в местном сопротивлении, тем раньше (т. е. при меньших числах Рейнольдса) возникают в нем вихри и сопротивления подчиняются квадратичному закону. Наличие в местном сопротивлении острых кромок (внезапное расширение, сужение и т. д.) способствует более раннему отрыву потока и наступлению автомодельности, и, наоборот, если местное сопротивление имеет обтекаемую форму (постепенное сужение), отрыв потока возникает при значительно больших числах Рейнольдса.  [c.219]


Под местными сопротивлениями понимаются такие элементы трубопроводов, в которых вследствие изменения размеров или конфигурации русла происходят изменение скорости потока, отрыв транзитной струи от стенок русла и возникновение вихреобразования.  [c.60]

Движение реальной жидкости в лопастной системе связано с образованием пограничного слоя При образовании местных диффузор-ностей, которые возникают при режимах, отличных от расчетного, происходит интенсивное нарастание пограничного слоя, что приводит к изменению структуры потока. В местах возникновения диффузор-ности частицы жидкости, обладая малой скоростной энергией, не могут проникнуть в область повышенных давлений, вследствие чего происходит отрыв потока. Наибольшая опасность отрыва имеет место на тыльной стороне лопасти.  [c.74]

Наиболее плохо клеевые соединения работают на неравномерный отрыв, так как в этих случаях они разрушаются последовательно участок за участком и, следовательно, максимальная нагрузка не зависит от площади соединения. Поэтому в случае необходимости использования таких соединений их следует дополнительно усиливать с помощью, например, местного утолщения обшивок или применять клее-заклепочные и клее-сварные соединения.  [c.290]

Если колебания числа оборотов или нагрузки происходят только при определенном положении сервомотора и регулирующих клапанов, то причиной этого обычно являются неправильное парораспределение — слишком малая перекрыта какого-либо регулирующего клапана, отрыв клапана, попадание постороннего предмета под клапан, износ или неправильный профиль кулачка распределительного вала, большой износ ролика или его пальца у регулирующего клапана, местное заедание в распределительном вале, в поршне или штоке сервомоторов, в каком-либо регулирующем клапане паровое усилие под регулирующий клапан при значительном ослаблении или изломе пружины регулирующего клапана, при неисправном регуляторе давления пара (противодавления), при местной неисправности регулирования работающей в параллели более мощной турбины и др.  [c.174]

Правильная оценка потерь энергии в последних ступенях необходима для разработки мероприятий по усовершенствованию проточных частей ЦНД. Возникающий при малых расходах пара отрыв потока у корня ступени может привести к поломкам РЛ вследствие резко нестационарного характера течения в области отрыва и в связи с перераспределением расходов по высоте ступени. Некоторую оценку пространственного течения в проточных частях с крутыми меридиональными обводами можно получить с помощью расчета. Однако в условиях обтекания профилей с местными срывами только экспериментальные исследования дают надежные количественные результаты.  [c.224]

При поперечном обтекании круглого цилиндра и при обтекании шара на передней части этих тел образуется ламинарный пограничный слой (по крайней мере, при достаточно низких числах Рейнольдса, когда переход к турбулентному пограничному слою не происходит). Расчет местной плотности теплового потока в окрестности критической точки и на лобовой поверхности тел выполняется рассмотренными методами. Однако в сечении цилиндра или шара, расположенном несколько выше по потоку, чем миделево, происходит отрыв ламинарного пограничного слоя (отрыв турбулентного пограничного слоя происходит несколько ниже миделева сечения). После отрыва пограничного слоя на поверхности тела наблюдаются колебания местного коэффициента теплоотдачи, соответствующие сложному вихревому характеру течения с уносом вихрей от поверхности в гидродинамический след.  [c.274]

Потери давления происходят при местном внезапном расширении поперечного сечения трубы. При входе в расширенную область образуются вихри и отрыв потока от стенки. Это создает значительные потери и тем большие, чем больше отношение сечений /б О Л//мен- Для определения потерь на внезапное расширение потока служит коэффициент i pa , значение которого можно найти по графику рис. 1-11.  [c.34]


Для водопарового тракта, отличающегося сложностью конфигурации, особое значение приобретают местные сопротивления. Их величина зависит от геометрических характеристик канала. Причиной местных потерь является отрыв пограничного слоя от стенок и возникновение вихрей в потоке, в которых теряется значительное количество энергии. Элементы водопарового тракта, кроме малого коэффициента гидравлического сопротивления должны удовлетворять еще требованиям компактности, легкости и минимально подвергаться эрозии.  [c.186]

В пограничном слое развиваются значительные силы вязкого трения, и в нем касательные напряжения трения изменяются от максимального значения на стенке почти до нуля на небольшом расстоянии от нее. За профилем сбегающий пограничный слой взаимодействует с внешним потоком и образует область подторможенной жидкости, в которой поле скоростей постепенно выравнивается. Эта область называется аэродинамическим следом. Вихревые потери обусловлены наличием местных диффузорно-стей на профиле. Отрыв потока на профиле, связанный с натеканием, чаще всего происходит вблизи входной кромки.  [c.52]

Увеличение расхода турбины сверх оптимального может вызвать и отрыв потока при входе на лопатки направляющего аппарата. Возникающая в резз льтате этого местная кавитация может быть причиной интенсивной эрозии поверхностей лопаток, обращенных к турбинной камере.  [c.119]

Кавитация неровностей возникает при наличии на поверхности обтекаемого тела выступов, впадин, резких переходов от одного сечения к другому и т. п. При обтекании таких неровностей а поверхности тела происходит местный отрыв потока жидкости на отдельных участках с образованием кавитационных каверн.  [c.8]

Следует, однако, иметь в виду, что чрезмерное увеличение отношения площадей F xI h, т. е. повышение относительной доли внешнего сжатия, приводит к очень сильному искривлению струек тока и к значительному ускорению потока на внешней поверхности обечайки, что может вызвать отрыв потока на этой поверхности (см. рис. 8.5), либо образование местных сверхзвуковых зон. Это приведет к снижению подсасывающей силы, росту внешнего сопротивления и падению эффективной тяги двигателя.  [c.256]

При бо<бп за поворотом при входе потока в боковое ответвление образуется большая вихревая зона (значительно большая, чем при повороте потока). Этому способствует диффузорный эффект, т. е. образование большого положительного градиента давления в месте разветвления тройника, где площадь сечения резко увеличивается по сравнению с площадью ответвления. Большой градиент давления вызывает частичный отрыв потока также и от противоположной прямой стенки, относящейся к прямому проходу (рис. 7-2, а). Обе зоны отрыва потока от стенки обусловливают местное сжатие струн как в боковом, так и в прямом ответвлении. За сжатием следует расширение потока.  [c.333]

Как следует из результатов расчета течения идеального газа, вблизи стенки в цилиндрическом участке рассматриваемого сопла существует местная зона торможения потока, что может вызвать отрыв по-  [c.536]

Перенос вещества с потоком движущейся жидкости называют конвекцией. Этот перенос можно создать искусственно, применяя размешивание. В естественных условиях к конвекции может привести местное разогревание электролита в зоне реакции, образование газа и отрыв его пузырьков от электрода и т.д.  [c.79]

Падающий скачок I (на рис. 277, а) создает вблизи точки N интенсивный местный градиент давления, вызывающий отрыв пограничного слоя. Замечательно, что, благодаря наличию медленного вязкого движения вблизи стенки в срывной области, индуцированное скачком возмущение давления распространяется вверх по потоку. Этим объясняется подтвержденный опытами  [c.705]

Коррозионное растрескивание может рассматриваться как предельная форма местной коррозии. Если предположить, что наиболее высокие наблюдаемые скорости коррозионного растрескивания (см/мин) вызваны анодным растворением, то фронт трещины будет растворяться при плотности тока более 100 А/см . Так как в процессе разрушения будут иметь место также механический отрыв и расклинивание, то в сделанном выше предположении нет необходимости, и доля, привносимая растворением, может быть весьма малой. Следует объяснить причины возникновения такого растворения.  [c.177]

Резкое местное сужение и дальнейшее расширение проход-лого сечения отдельной струи вызывает отрыв ее от поверхности твэла. Возникновение турбулентных пульсаций и, по мере увеличения скоростей, появление отрывного течения струек приводят к значительно болынему гидродинамическому сопротивлению при течении охладителя через шаровые твэлы, по сравнению с теченлем теплоносителя в трубах при одинаковом  [c.39]

В соответствии с электрохимическим механизмом разрушения металла, развитие трещин можно представить следующим образом. Сначала на поверхности металла вознпканэт небольшие местные поражения, например в виде коррозионных язвинок. На этих участках начинает протекать электрохимический процесс при этом язвинки начинают действовать подобно запилу в качестве концентратора напряжений. Ма1сснмалы1ые значения напряжений будут на дне язвинок и поэтому дно будет иметь более отри-  [c.108]

Наличие даже слабого скачка уплотнения приводит к резкому увеличению давления во внешнем потоке. Рост давления передается навстречу потоку по дозвуковой части пограничного слоя. Линии тока отклоняются от стенки, порождая в сверхзвуковой частя пограничного слоя семейство волн сжатия, которые распространяются во внешний поток и оказывают влияние на форму и интенсишность скачка уплотнения вблизи области взаимодействия. Продольный градиент давления в пограничном слое оказывается значительно меньше, чем во внешнем потоке. Если скачок слабый, то движение в пограничном слое происходит под воздействием небольшого положительного градиента давления и отрыв потока не происходит. С увеличением интенсивности скачка уплотнения во внешнем потоке возрастает градиент давления вблизи стенки и возникает отрыв пограничного слоя. При этом увеличивается отклонение линий тока в сверхзвуковой части течения, благодаря чему поддерживается необходимое распределение давления, соответствующее данной интенсивности скачка уплотнения. В зависимости от условий во внешнем потоке (интенсивности скачка уплотнения, местного числа М, ускоренного или замедленного характера течения) и формы обтекаемого тела возможны два случая. В первом случае поток после отрыва присоединяется снова к стенке. Сразу за скачком уплотнения возникают волны разрежения, как при обтекании внешнего тупого угла. В месте присоединения поток направлен под некоторым углом к стенке, поэтому здесь возникает новый скачок уплотнения, который может вызвать иногда новый отрыв пограничного слоя. Таким образом, могут появиться несколько 22  [c.339]


Для расчета реактивной силы, кроме расхода газа, нужно знать давление на срезе и скорость истечения, которые зависят от потерь как в дозвуковой, так и в сверхзвуковой части сопла. Выше предполагалось, что потери распределяются равномерно по сечению сопла, однако истинная картина течения газа внутри сопла не отвечает этому простейшему предположению. При большой кривизне стенок в области горловины сопла возможен местный отрыв пограничного слоя от стенок, кроме того, в начале расширяюЕцейся части сопла некоторые линии тока сверхзвукового течения сужаются, что приводит к образованию местных косых скачков уплотнения.  [c.433]

Кроме потерь трения значительную часть гидравлических потерь составляют потери вихреобразования, которые зависят от ряда факторов. Кольцевая форма проточной части гидродинамических передач, с одной стороны, и изогнутость лопастных систем, с другой, приводят к перераспределению скоростей и давлений, что влечет за собой увеличение неравномерности потока примерно так же, как и в коленах обычных труб. Но наряду с этим в проточной части имеются и свои особенности. Колено проточной части гидродинамических передач является как бы бесконечным по ширине при конечных размерах радиуса поворота и высоты в направлении радиуса (см. рис. 7), вследствиечегосостояниепотокабудетхарактеризоваться увеличением давления и скорости от внутренней стенки к внешней. При таком состоянии уменьшаются вторичные токи в месте поворота потока, но усугубляется действие местной диффузорности. Происходит как бы обтекание цилиндра кольцевой формы с нарастанием давления по внутренней поверхности [41]. Так как скорости при этом уменьшаются и энергии частиц жидкости недостаточно, чтобы преодолеть нарастание давления, происходит отрыв потока с образованием вихрей, энергия которых при рассеивании их превращается в тепло.  [c.52]

Сопротивление отрыву представляет собой важнейшую характеристику клеевых соединений, в особенЕЮСти для конструкций, работающих при высоких температурах, так как в этих случагЕх приходится пользоваться хрупкими материалами, плохо работающими на отрыв. В таких системах часто с увеличением протяженности нахлестки падает удельная несущая способность. Это связано с тем, что высокий модуль упругости не позволяет перераспределить высокие местные напряжения, возникающие по концам клеевого соединения.  [c.94]

В авиационной технике к выбору коэффициента запаса установился подход, отличный от принятого в общем машиностроении. Это отличие обусловлено требованиями безопасности полета, и соответствующий коэффициент носит название коэффициента безопасностн /. Основная идея сводится к тому, чтобы дать летчику некоторый неприкосновенный резерв прочности на случай непредвиденных обстоятельств. Не пугая читателя описанием возможных ситуаций, укажем только, что обстановка может заставить экипаж самолета предпринять такие действия, которые связаны с возникновением перегрузок сверх номинала. Это в первую очередь — маневры, направленные н 1 быстрое снижение, на выход из шквальной обстановки, на сбой пламени при пожаре и пр. В расчетах предполагается, что машина, как летательный аппарат, полностью выходит из строя при нагрузках, увеличенных в / раз по отношению к нормальным полетным. Такие мелкие повреждения, как отрыв обшивки или местная остаточная деформация отдельного узла, в счет не идут. При номинальных нагрузках, соответствующих различным расчетным случаям, сохранность конструкции должна быть обеспе-  [c.48]

Процесс возникновения дискретной фазы в межлопаточных каналах решетки носит флуктуационный характер и сопровождается появлением конденсационной турбулентности, интенсивность которой значительна. Хорошо известно, что в суживающихся каналах большой конфузорности происходит частичное или полное вырождение гидродинамической турбулентности в пограничных слоях, т. е. имеет место ламинаризация слоя. Процесс ламннари-зации ( обратного перехода) в пограничных слоях особенно интенсивен при околозвуковых скоростях, когда продольные отрицательные градиенты давления достигают максимальных значений. Ламинаризированный слой отрывается местными адиабатными скачками, и этот процесс сопровождается появлением жидкой фазы и турбулизацией слоя (генерируется конденсационная турбулентность). В результате отрыв слоя ликвидируется, вновь происходит ламинаризация слоя, появляется отрыв и т. д. Б соответствии с перемещениями зоны отрыва происходят перемещения скачка уплотнения по спинке профиля в косом срезе, что вызывает пульсацию термодинамических параметров — давления и температуры 48, 52, 53, 124]. Механизм генерации пульсаций параметров при конденсации в сопловых и рабочих решетках действует и при дозвуковых скоростях и вызывает опасные возмущающие силы. Таким образом, переход в зону Вильсона сопровождается специфическими нестационарными явлениями, в основе которых лежат флуктуационный механизм возникновения жидкой фазы и генерации конденсационной нестационарности, периодические отрывы пограничного слоя. В тех случаях, когда частота процесса конденсационной нестационарности близка или кратна частоте волн, возникающих при взаимодействии решеток, амплитуда пульсаций давлений (и температур) резко возрастает—имеет место резонанс и дополнительные возмущающие силы достигают опасного предела.  [c.192]

Если увеличить подачу первичного воздуха более предусмотренного количества местной производственной инструкцией, то пламя будет уменьшаться, становиться более прозрачным и отрываться от горелки. В горелке появится сильный шум. Различают неполный и полный отрыв пламени от горелки при неполном отрыве пламени от горелки газовоздушная смесь будет гореть на небольшом расстоянии от горелки, при этом получается большой химический недожог газа с появлением окиси углерода при полном отрыве пламени от горелки возможно загазование топки дымоходов котла. Работа горелок хотя и должна осуществляться при наибольшем поступлении первичного воздуха, но надо следить, чтобы его было подано в количестве, не вызывающем опасность отрыва или проскока пламени в горелку. С этим необходимо считаться еще и потому, что отрыву пламени от горелки может содействовать увеличение давления газа перед горелкой и силы тяги в топке.  [c.114]

При использовании схемы свободного следа предварительно находились нагрузки для жесткого следа. По полученным таким образом значениям интенсивности присоединенных вихрей определялась деформированная форма концевых вихрей. После этого для новой формы вихрей вычислялись индуктивные скорости и аэродинами1 ские нагрузки. Поскольку форма свободного следа мало зависит от деталей изменения циркуляции присоединенного вихря, дальнейшие приближения обычно не требуются. Анализ экспериментальных аэродинамических нагрузок несущего винта показывает, что нагрузки на стороне наступающей лопасти максимальны, когда сошедший с впереди идущей лопасти вихрь впервые приближается к следующей лопасти. С ростом if) во время прохождения лопасти вблизи вихря эта нагрузка уменьшается. В работе [J.30] установлены причины такого снижения нагрузок, которые состоят в следующем. При сближении внешнего вихря и лопасти происходит изменение его свойств, в частности может произойти резкое увеличение (распухание) ядра вихря. Кроме того, внешний вихрь взаимодействует со сходящими с лопасти продольными вихрями, которые объединяются с внешним вихрем в результате диффузии. Причиной снижения вызванных внешним вихрем нагрузок может быть и местный отрыв потока вследствие больших радиальных градиентов давления на лопасти. Эти эффекты моделировались в работе [S.47] путем увеличения ядра вихря при его встрече с лопастью и распространения такого распухания ядра вверх по потоку. Оказалось, что введение вызванного лопастью и распространяющегося вверх по потоку распухания вихря достаточно для удовлетворительного расчета аэродинамических нагрузок. Переход к схеме несущей поверхности приводит к существенному снижению расчетных нагрузок, вызванных приближающимися к лопасти вихрями, но этого оказывается все же недостаточно для того, чтобы такие нагрузки хорошо согласовывались с экспериментальными. Нужно заметить, что описанный выше способ  [c.670]


Судя по характеру кривых рис. 210, можно думать, что в точке перехода Т происходит местный, не получающий дальнейшего развития отрыв ламинарного слоя, сопровождающийся обратным прилипанием уже турбулентного пограничного слоя к поверхности шара. Такой турбулентный пузырь (английский термин ЬпЬПе) отрыва в развитом своем виде уже давно наблюдался на лобовых участках крыловых профилей. Появление его и исчезновение приводило к загадочным изменениям подъемной силы и сопротивлений крыльев на больших углах атаки, к гистерезису коэффициента подъемной силы при начальном возрастании и последующем убывании угла атаки и др. Одно из первых описаний этого явления можно найти в сборнике монографий, вышедшем под редакцией С. Голдстейна  [c.541]

Сопротивление усталости при повышенных температурах определяется, как и при нормальных, проц самй местного пластического деформирования, накопления повреждения и распространения трещин. На сопротивление так же влияют изменения свойств металла во времени в результате цагрева деформированного металла, они отра-жают старение, разупрочнение, возврат, охрупчивание и проявление других связанных со структурным изменением факторов.  [c.216]

Отрыв равного числа частиц. Изопьюры. При обдуве воздушным потоком запыленных поверхностей структура пограничного слоя будет неодинакова. Это, в свою очередь, приводит к тому, что в различных частях поверхности степень удаления прилипших частиц будет различной. Разбивая поверхность на зоны, можно оценить удаление прилипших частиц с некоторых небольших зон поверхности, для которых параметры воздушного потока и структура пограничного слоя остаются практически неизменными. Это приводит к возможности расчета местных коэффициентов удаления Kn см. формулу (1,4)] или чисел адгезии ур. Соединяя точки с равными коэффициентами удаления, можно получить кривые одинакового удаления частиц, названные изопьюрами [87].  [c.318]

Для построения изопьюр разобьем ребро изолятора по периметру окружности на интервалы, равные 10°. Тогда каждая точка периметра ребра изолятора будет характеризоваться определенным углом относительно оси потока и расстоянием от центра изолятора. Значения этих углов даны на рис. X, 6. Числа на кривых в кольце, ограниченном снаружи диаметром Dp, а внутри диаметром Dm, — значения местных коэффициентов удаления, а сами кривые внутри кольца являются изопьюрами для горизонтальной поверхности ребра изолятора. При оценке эффективности удаления прилипших частиц можно условно выделить следующие зоны (см. рис. X, 6) 1 — зона малоэффективной очистки, которая обусловлена затуханием скорости потока при достижении им шейки изолятора 2 — зона относительно эффективного удаления прилипших частиц 3 — зона (на рисунке она заштрихована), в которой отрыв частиц не наблюдается и коэффициент удаления равен  [c.319]


Смотреть страницы где упоминается термин Отрыв местный : [c.474]    [c.340]    [c.230]    [c.82]    [c.294]    [c.166]    [c.54]    [c.176]    [c.467]    [c.33]    [c.187]    [c.185]    [c.183]   
Аэрогидродинамика технологических аппаратов (1983) -- [ c.2 , c.8 ]



ПОИСК



Отрыв

Явление отрыва транзитной струи (или пограничного слоя) от стенок русла. Физические причины, обусловливающие такого рода отрыв Общий характер местных потерь напора

Явление отрыва транзитной струи от стенок русла. Водоворотные области. Поверхность раздела. Общий характер местных потерь напора — 4-15. Резкое расширение трубопровода. Формула Бордй. Выход иа трубопровода



© 2025 Mash-xxl.info Реклама на сайте