Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементарная работа силы стационарной

Элементарная работа сил стационарного потенциального поля представляет собой полный дифференциал. В самом деле, из (2) и (4) получаем  [c.79]

Стационарное поле называется потенциальным, если существует функция U(x, у, г), дифференциал которой равен элементарной работе силы поля F, т. е.  [c.236]

Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом для равновесия механической системы, подчиненной идеальным, стационарным ы неосвобождающим связям, необходимо и достаточно, чтобы сумма -элементарных работ всех активных сил, приложенных к точкам системы, была равна нулю на любом возможном перемещении системы, если скорости точек системы в рассматриваемый момент времени равны нулю, т. е.  [c.387]


Сумма, стоящая в левой части равенства (9), равна элементарной работе всех приложенных сил на произвольном возможном перемещении рассматриваемой стационарной системы  [c.211]

Для того чтобы положение qf = q j было положением равновесия стационарной системы, необходимо и достаточно, чтобы в этом положении элементарная работа всех приложенных сил на любом возможном перемещении была равна нулю.  [c.211]

Вариационный принцип Лагранжа. В соответствии с гипотезой сплошности тело может рассматриваться как система материальных точек и к нему можно применить принцип возможных перемещений Лагранжа для равновесия системы материальных точек со стационарными неосвобождающими и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил на любых возможных перемещениях системы была равна нулю.  [c.122]

Из уравнения (I. 112) видно, что в случае идеальных стационарных связей коэффициент при М равен нулю и приращение кинетической энергии определяется элементарной работой только активных сил, как и в случае свободной системы.  [c.95]

Сначала здесь рассматриваются уравнения Лагранжа второго рода для материальной системы с голономными стационарными связями в неголономной системе отнесения. Преобразуем обобщенные силы. Для этого составим выражение элементарной работы. Имеем  [c.157]

Необходимое и достаточное условие равновесия системы, подчиненной стационарным идеальным связям, заключается в равенстве нулю суммы элементарных работ задаваемых сил на любом возможном перемещении системы из рассматриваемого положения равновесия.  [c.319]

Принцип возможных перемещений (Иоганн Бернулли (1667—1748)). Необходимым и достаточным условием равновесия системы материальных точек, подчиненной геометрическим стационарным неосвобождающим и идеальным связям, является равенство нулю суммы элементарных работ активных сил на любом возможном перемещении системы из рассматриваемого положения равновесия, т. е.  [c.309]

Как было показано, принцип Даламбера позволяет записывать динамические уравнения движения в виде уравнений равновесия, так как при добавлении сил инерции к активным силам и силам реакций связен, действующим на систему, получается уравновешенная система сил. Но если система сил уравновешена, то к ней применим принцип возможных перемещений. Последовательное применение этих принципов к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, позволяет сформулировать принцип Даламбера— Лагранжа если к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, условно приложить силы инерции всех ее точек, то в каждый момент времени сумма элементарных работ активных сил и сил инерции равна нулю на любом возможном перемещении системы, т. е.  [c.288]


Приведенные моменты сил Мщ и Мп2 находим по условию (7.20). Имея в виду, что в рассматриваемом примере все связи голономные и стационарные, можно равенство элементарных работ на возможных перемещениях заменить равенством мощно  [c.151]

Стационарность потенциальной энергии системы. Элементарная работа внешних сил Ь а е) может быть отождествлена с вариацией потенциальной энергии деформации 6а, равной вариации свободной энергии в изотермическом процессе и внутренней энергии в адиабатическом )  [c.148]

Стационарность потенциальной энергии системы. В идеально-упругой среде элементарная работа внешних сил 6 Ще) равна вариации потенциальной энергии деформации. Вспомнив ее определение (1.2.13) и возвращаясь к (5.1.1), имеем  [c.675]

Принцип виртуальных перемещений. Для равновесия стационарной материальной системы, стесненной идеальными связями, необходимо и достаточно, чтобы сумма элементарных работ активных сил, приложенных к точкам системы, была неположительна на любом виртуальном перемещении (неосвобождающем или освобождающем)  [c.39]

Если точкам системы дать перемещения, не нарушающие наложенных связей (согласные со связями, дозволяемые связями), то на основании принципа виртуальных перемещений мы получим, что сумма элементарных работ уравновешенной системы сил равна нулю. Допустим, что наложенные на систему голономные связи являются идеальными, стационарными и удерживающими. Тогда на основании принципа виртуальных перемещений в применении к уравновешенной системе сил имеем  [c.486]

Рассмотрим сначала, как вычисляется работа и потенциальная энергия в стационарном поле (11.7). Найдем элементарную работу потенциальной силы  [c.119]

Если нет трения в шаровом подшипнике , то связь —неподвижная точка —будет идеальной и стационарной. Следовательно, дифференциал кинетической энергии будет равен сумме элементарных работ всех внешних (массовых и поверхностных) сил на действительном перемеи ении. Используя формулы (6.27) и (6.28), запишем  [c.386]

Прокомментируем условие (7). Предполагается, что внутренние силы центральные. Напомним, это означает, что они зависят от расстояния между материальными точками системы и удовлетворяют третьему закону Ньютона. Такие силы потенциальные стационарные. Их элементарная работа представляется полным дифференциалом, =-(1П где Я =  [c.144]

Внешние силы по условию (7) тоже потенциальные стационарные. Их элементарная работа представляется полным дифференциалом — - 77", где Я" = 3 ,, г,,..., Хд,, з дг, Гд,) - потенциальная энергия системы во  [c.144]

Еще один способ вычисления обобщенных сил относится к силам стационарного потенциального силового поля. Стационарным потенциальным силовым полем называется часть пространства, в каждой точке которого на находящуюся в ней (или на проходящую через нее) материальную частицу системы действует сила, зависящая только от положения этой точки, причем работа силы не зависит от пути, по которому перемещается точка приложения силы, а определяется начальным и конечным положениями точки. Потенциальное силовое поле можно еще определить как поле сил, элементарная работа которых представляет точный дифференциал некоторой функции П от координат системы. Для одной силы это определение выражается равенством  [c.24]

Т.З. Если связи стационарны, то дифференциал кинетической энергии системы равен сумме элементарных работ активных сил на действительных перемещениях.  [c.97]

Мы уже знаем, что при перемещении частицы из одной точки стационарного поля консервативных сил в другую работа, которую производят силы поля, может быть представлена как убыль потенциальной энергии частицы, т. е. A 2=U —1)2 = —AU. Это относится и к элементарному перемещению dr, а именно бЛ=—AU, или  [c.93]

В случае стационарного течения жидкости через элементарный контрольный объем в отсутствие сил трения или совершаемой работы на валу получается уравнение движения Эйлера для одномерного потока  [c.26]


Понятие о потенциальном силовом поле. Работа потенциальной силы. Остановимся на вычислении элементарной работы потенциальных сил, т. е. сил, образующих потенциальное силовое поле. Полем сил вообще называется область пространства, в каждой точке которого на помещенную туда материальную частицу действует определенная сила, являющаяся однозначной, конечной и дифференцируемой функцией координат этой точки. Поле сил называется стационарным, если сила не зависит явно от времени в противном случае поле называют нестационарным. В стационарном поле сила F является функцией только кооряинат точки поля, т. е.  [c.273]

Сила, перпендикулярная к перемещению, не производит работы. ПоэтоА у работа идеальной реакции при виртуальном перемещении равна пулю. Так как существуют связи более сложной природы, выражаемые уравнениями, то указанное свойство принимают как определение и под идеальными связями понимают такие связи, при которых сумма элементарных работ их реакций на всяком виртуальном перемещении системы (или, как говорят, сумма виртуальных работ) равна нулю. Будем считать их связями без трения, стационарными, т. е. не изменяк 1щнлшся со временем, и удерживающими, т. е. не допускающими таких перемеи ений, в результате которых точка освобождается or спя 5И.  [c.416]

Полная механическая энергия частицы. Согласно (4.28), приращение кинетической энергии частицы равно элементарной работе результирующей F всех сил, действующих на частицу. Что это за силы Если частица находится в интересующем нас стационарном поле консервативных сил, то на нее действует консервативная сила Fkoh со стороны этого поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами Рстор-  [c.99]

В случае идеально гладкой поверхности реакция целиком сводится к силе, нормальной к поверхности. Таким образом, если связью служит поверхность без трения, то реакция связи нормальна к связи. В этом случае элементарная работа реакции на любом возможном перемеи ении точки равна нулю, так как сила направлена перпендикулярно к перемеи ению. Подчеркнем, что по определению возможных перемещений только что сказанное верно как в случае стационарных, так и нестационарных связей. Само собой разумеется, что элементарная работа реакций на той части бесконечно малого перемещения, которая соответствует собственному перемещению связи, может быть в общем случае и не равна нулю. Точно так л<е в случае движения по идеальной абсолютно гладкой кривой реакция будет нормальна к кривой и работа реакции на возможном перемещении будет равна нулю. Если же поверхности или кривые не идеально гладки, то работа реакций не будет равна нулю. Аналогичное заключение относится к твердому телу, скользящему по плоскости. Если поверхности соприкасающихся тел идеально отполированы, реакция будет направлена по общей нормали к ним при этом работа реакции на. "юбом возможном перемещении будет равна нулю.  [c.315]

Принцип возможных перемещений может быть сформулирован следующим образом для равновесия механической системы с удержива-юш,ими идеальными стационарными связями необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, приложенных к системе, на всяком возможном перемещении системы равнялась нулю. Математически принцип возможных перемещений выражается условием  [c.766]

Эти уравнения имеют такой же вид, как и в случае ста ционарных связей [ 143, уравнения (169)]. Применяя теперь принцип Даламбера и принцип возможных перемещений, приходим, как былогсказано в 133, к заключению, что сумма элементарных работ заданных сил, при.юженных к материальным точкам данной системы, сил инерции этих точек и реакций связей при всяком возможном (в случае стационарных связей) или при всяком виртуальном (в случае нестационарных связей) перемещении системы равна нулю. Если нестационарные связи являются, как ны предполагаем, совершенными, то сумма элементарных работ реакций этих связей при всяком виртуальном перемещении системы равна нулю, и мы приходим к тому же общему уравнению динамики, которое в 133 мы имели для случая стационарных связей  [c.550]

Применяя теперь теорему об изменении кинетической энергии системы в дифференциальной форме, согласно которой дифференциал кинетической энергии системы в случае совершенных стационарных связей равен сумме элементарных работ всех заданных сил, действуюпщх на эту систему, имеем  [c.557]

Выражая, далее, сумму элементарных работ заданных сил в обобщенных координатах и принимая во внимание, что при стационарных связях действительное перемещение системы за вред1я является одним из ее возможных перемещений, в случае системы с одной степенью свободы получим  [c.557]

Теорема 3.2 (принцип возможных перемещений). Положение, i = 1, N, к = 1,п) стационарно заданной системы является положением равновесия тогда и только тогда, когда на любом возможном перемещенпп i = I, N (уйцк, к = 1,п) пз положения г° для элементарной работы 5А действующих на систему сил выполняется  [c.17]

Тэннер [Т.13] разработал метод расчета характеристик на основе теории работы [G.62], Сделаны следующие предположения каждое сечение лопасти обтекается двумерным стационарным потоком, распределение индуктивных скоростей равномерное, влиянием радиального течения можно пренебречь, лопасть совершает только маховое движение как твердое тело вокруг оси отнесенного ГШ. Предположения о малости углов не делалось. Влияние срыва и сжимаемости учитывалось в аэродинами ческих характеристиках сечений. Уравнение махового движения численно интегрируется до тех пор, пока не будет получено установившееся периодическое решение. После этого интегрированием элементарных сил, действующих на лопасть, определяются силы и мощность несущего винта. Этим методом были получены [Т.14, Т.-15] графики и таблицы аэродинамических характеристик несущих винтов ля заданных величин характеристики режима работы винта (0,25 ц 1,40), крутки (0кр = О, —4 и —8°) и концевого числа Маха (0,7 Mi, до 0,9). Более подробно результаты Тэннера рассмотрены в гл. 6.  [c.261]


С конца бО-х годов наряду с методом характеристик для расчета сверхзвуковых течений в ЛАБОРАТОРИИ интенсивно развивались методы расчета нестационарных течений, а на их основе с использованием процесса установления - стационарных смешанных (с переходом через скорость звука) течений. Для таких расчетов в качестве базовой была взята монотонная разностная схема, предложенная С. К. Годуновым в 1959 г. [15] для расчета нестационарных течений. В основе численной реализации этой схемы (далее схемы Годунова -СГ) лежит решение задачи о распаде произвольного разрыва, в силу чего СГ получила название раснадной . К концу бО-х годов в аэро- и газодинамических приложениях были известны лишь единичные примеры ее применения. К тому же полученные в них результаты не отличались высоким качеством по сравнению с результатами, полученными в те годы другими методами. В противоположность этому первая же выполненная в ЛАБОРАТОРИИ работа по применению СГ ([16, 17] и Глава 7.2) к решению прямой задачи теории сопла Лаваля продемонстрировала несомненные достоинства указанной схемы. Существенным моментом для успеха применения СГ для расчета смешанных течений стало обнаружение ситуаций, при которых в задаче о распаде разрыва граница разностной ячейки попадает в волну разрежения. Такие ситуации неизбежно возникают вблизи звуковых линий при расчете смешанных течений методом установления. Однако в двумерных задачах они, снижая точность результатов, оставались незамеченными. Указанная возможность была обнаружена при решении в одномерном приближении задачи о запуске ударной трубы переменной площади поперечного сечения ([18] и Глава 7.3). Предложенный тогда же элементарный способ учета подобных ситуаций стал неотъемлемой принадлежностью любых реализаций раснадных схем.  [c.115]


Смотреть страницы где упоминается термин Элементарная работа силы стационарной : [c.380]    [c.264]    [c.72]    [c.331]    [c.143]    [c.122]    [c.506]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.67 , c.69 ]



ПОИСК



Работа силы

Работа силы (см. элементарная работа силы)

Работа силы элементарная

Работа элементарная



© 2025 Mash-xxl.info Реклама на сайте