Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция Сен-Венана

Здесь у/(х ,х ) - функция Сен-Венана.  [c.257]

IV. Рассмотрим постановку задачи по отношению к функции Сен-Венана  [c.260]

Имея функцию напряжений U (х, у), можно определить также депланацию сечений при кручении стержней, т. е. функцию Сен-Венана ф (л , у).  [c.258]

В заключение параграфа дадим выражение крутящего момента через функцию Сен-Венана у). Подставив для этого в (6.1) выражения (7.1), получим  [c.252]

При решении задачи о кручении иногда вместо функции кручения Сен-Венана ф удобно ввести другую функцию F, называемую функцией напряжений Прандтля. Она вводится по формулам  [c.176]


В качестве примера приложения полученных результатов рассмотрим задачи для функций напряжений в задаче кручения Сен-Венана  [c.119]

На первый взгляд кажется, что условие пластичности Треска — Сен-Венана более простое. Действительно, если главные оси заранее известны, то это условие выражается при помощи линейных функций от компонент тензора напряжений, притом самых простых линейных функций. Но при решении задач теории пластичности мы обычно не знаем, какое напряжение окажется больше, какое меньше мы далеко не всегда можем указать заранее и знак напряжения. Поэтому мы не знаем, на какой стороне шестиугольника окажемся, какую из простых формул нужно применить. А если главные оси заранее неизвестны, то теория Треска — Сен-Венана оказывается существенно более сложной.  [c.58]

Для решения поставленной задачи в перемещениях воспользуемся полуобратным методом Сен-Венана, который, как известно, заключается в задании одних неизвестных функций и отыскании других из уравнений теории упругости. В соответствии с этим методом из трех функций перемещений и, v и w зададимся первыми двумя. Допустим, что все сечения стержня деформируются одинаково и что компоненты перемещений точек в направлении осей х ж у определяются выражениями  [c.133]

Таким образом, соотношения (3.45) обеспечивают совместность шести дифференциальных уравнений (3.26) для определения трех функций Uk. Эти уравнения совпадают с условиями совместности Сен-Венана, поэтому условия Сен-Венана также обеспечивают интегрируемость шести дифференциальных уравнений (3.26). С учетом условий Сен-Венана формулы (3.44) определяют Uh независимо от формы кривой интегрирования, лежащей целиком в области т.  [c.59]

Если тело многосвязно, то интеграл в формуле (3.44) может, вообще говоря, получить конечные приращения, в силу чего не обеспечивается однозначность перемещений, тогда как они должны быть однозначными. Многосвязное тело с помощью надлежащих мысленных разрезов можно обратить в односвязное, тогда при соблюдении условий совместности деформаций Сен-Венана перемещения Uh, определяемые (3.44), будут однозначными функциями, если кривая интегрирования нигде не пересекает линий разрезов. При приближении точки М к какой-либо точке линии разреза с левого или правого берега uu будут принимать, вообще говоря, различные значения. Отсюда становится ясно, что в случае много-связной области для обеспечения совместности деформаций дополнительными условиями будут (и )л.бер= (Ый)пр.бер ВДОЛЬ ВСеХ ЛИНИЙ разрезов.  [c.59]


В третьей главе было сказано, что шесть компонентов тензора деформаций ehr не являются произвольными функциями координат точки тела, а должны удовлетворять шести условиям совместности деформаций Сен-Венана. Учитывая это обстоятельство, подставим формулы (5,27) в условия совместности деформаций Сен-Венана тогда после ряда преобразований найдем шесть соотношений, связывающих между собою компоненты тензора напряжений. Следовательно, в итоге будем иметь три дифференциальных уравнения (5.26) и шесть соотношений между компонентами тензора напряжений, к выводу которых и приступим. Будем считать, что тело однородное, т. е. Я и не зависят от координат. Тогда полученная система уравнений будет применима только для изотропных, однородных и линейно-упругих тел.  [c.81]

Решение обратной задачи значительно проще, чем решение прямой задачи. Особенно просто решается обратная задача, если задаться перемещениями щ. При заданных непрерывных функциях щ = = Ui Xk) дифференциальные зависимости Сен—Венана тождественно удовлетворяются и, следовательно, в этом случае они не используются. Решение этой обратной задачи выполняется в следующем порядке на основании формулы закона Гука (4.4) определяются компоненты тензора напряжений atj (Хи), соответствующие принятым функциям и, (лгй), а из уравнений равновесия (4.3) и граничных условий (4.6) определяются внешние силы, при которых осуществляются заданные перемещения.  [c.72]

Если задаваться компонентами тензора напряжений atj (хи), то решение обратной задачи будет несколько сложнее. В этом случае перемещения ыг (х ) находятся интегрированием уравнений (4.1), что возможно, если компоненты тензора деформации (х ), которые определяются формулой (4.5) закона Гука по принятым функциям oij (Xk), будут удовлетворять дифференциальным зависимостям Сен-Венана (4.2). Следовательно, компонентами тензора напряжений oi] (Xfi) надо задаваться так, чтобы выполнялись условия совместности  [c.73]

Заметим, что перемещение ы также определяется в общем виде, но через функцию напряжений Ф или через так называемую гармоническую функцию изгиба Сен-Венана % х , Х2) [21.  [c.219]

В третьей главе обсуждается постановка граничных и начально-граничных задач теории упругости, доказывается их единственность. Рассмотрению двумерных задач предшествует формулировка принципа Сен-Венана и его доказательство в случае нагружения цилиндрического стержня. Далее вводятся общие представления смещений через гармонические и через волновые функции, позволяющие свести некоторые важные задачи теории упругости к одной или нескольким последовательно решаемым классическим краевым задачам. Обстоятельно рассмотрены качественные вопросы, связанные с понятием сосредоточенной силы, нерегулярных решений задач теории упругости, возникающих при наличии на границе угловых линий, конических точек и т. п. Указанные решения легли в основу постановок задач механики хрупкого разрушения.  [c.7]

Эти равенства совпадают с тремя соотношениями Сен-Венана. Обращаясь к функциям Шу и со, получаем еще по три уравне-  [c.214]

Из оценки (2.1) следует, что энергия цилиндра 0 2) убывает по мере удаления от торца и указывается порядок ее убывания. Выводы, получаемые на основе (2.1), нельзя считать еще удовлетворительными (в смысле доказательства принципа Сен-Венана), поскольку речь идет лишь об энергии деформации, а не о напряжениях. Поэтому используем еще один результат. Пусть По — энергия упругих деформаций в некотором щаре. Тогда для квадратичной функции = е/уе,/ в центре шара имеет место оценка  [c.259]

Из сопоставления (2.22) и (2.25) следует, что предельное решение, доставляемое с использованием строгих методов, действительно совпадает с формальным решением (2.25). Следовательно, распределение напряжений не зависит в пределе от фактического характера краевого условия и определяется результирующим моментом. В третьем случае в выражении (2.24) присутствуют члены, входящие в решение (2.25), однако они не являются главными, и поэтому в пределе напряженное состояние будет определяться лишь первым слагаемым. Существенно, что это слагаемое зависит от функции ср и, следовательно, от характера фактически задаваемой нагрузки. Таким образом, приходим к примеру, противоречащему общепринятой формулировке принципа Сен-Венана.  [c.468]


В качестве одного из простейших примеров рассмотрим задачу о толстостенной трубе иод действием внутреннего давления. Обозначим а — внутренний радиус трубы, Ь — внешний радиус, q — давление (рис. 8.12.1). Будем считать, что труба очень длинная и к торцам ее приложены растягивающие силы Р. Вследствие принципа Сен-Венана можно утверждать, что поперечные сечения ее останутся плоскими и напряженное состояние будет во всех сечепиях одинаково. Очевидно, что эту задачу следует рассматривать в цилиндрических координатах, т. е. пользоваться уравнениями 7.8, считая, что искомые функции зависят только от радиуса г. Тогда уравнения равновесия  [c.267]

Как мы видели, согласно теории пластического течения, основанной на условии пластичности Треска — Сен-Венана с ассоциированным законом течения, пластическая деформация представляет собою простой сдвиг в плоскости, определяемой осями наибольшего и наименьшего главных напряжений. Если деформации малы, то скорость деформации равна производной от деформации по времени. С другой стороны, если упрочняющийся материал оказывается в состоянии чистого сдвига, то величина пластического сдвига представляет собою совершенно определенную функцию от касательного напряжения  [c.532]

Один вариант теории пластического течения с упрочнением мы уже разобрали в 16.1. Предполагая, что поверхность течения есть призма Треска — Сен-Венана, и считая, что мы находимся все время на одной и топ же грани этой призмы, мы проинтегрировали по существу уравнения (16.3.2) и пришли к некоторому варианту деформационной теории. Другой вариант был предложен Прагером, он основан на предположении, что как функция /, так и функция Н зависят лишь от второго инварианта девиатора тензора напряжений, например  [c.540]

Полуобратный метод Сен-Вена на. При решении задачи этим методом делают допущения, о виде некоторых из функций напряжений или перемещений. При этом дифференциальные уравнения настолько упрощаются, что решение их не представляет особых трудностей. Полуобратный метод является одним из наиболее эффективных методов решения задачи теории упругости.  [c.49]

Уравнения (3.2) заменяют уравнения совместности деформаций Сен-Венана. Решение задачи теории упругости в напряжениях сводится, таким образом, к интегрированию системы девяти уравнений — шести уравнений Бельтрами — Митчелла и трех уравнений равновесия Навье (1.16). Найденные функции напряжений должны удовлетворять систе-  [c.55]

Если допустить, что усилия Б срединной плоскости (Л , Му, Т) достаточно велики, а перемещения ю малы (теория Сен-Венана), то в уравнениях (6.25) —(6.27) можно пренебречь членами, представляющими собой произведения производных от функции прогиба. Тогда эта система примет следующий вид  [c.135]

Для этого заметим, что вместо гармо-Метод Сен-Венана нической функции кручения / (х, у) мож-  [c.364]

Остальные два уравнения Сен-Венана удовлетворяются тождественно. Из (1.4) следует, что 833 мон вт быть только линейной функцией хну  [c.482]

Второй путь решения прямой задачи состоит в том, что в качестве основных неизвестных функций принимаются три функции и, и и ш, для чего применяется система уравнений равновесия, выраженных через перемеш,ения. Поскольку при использовании такого пути решения в первую очередь находятся перемещения (решение в пере-меш,ениях), отпадает необходимость в решении системы уравнений Коши, а уравнения совместности деформаций Сен-Венана превращаются в тождества относительно перемещений, поскольку непрерывным функциям и, V и W соответствуют всегда совместные деформации.  [c.617]

Подставив в них (15.10) и выполнив интегрирование с учетом ряда (15.3), получаем следующее выражение для депланационной функции Сен-Венана  [c.269]

Можно доказать, что уравнения совместности деформаций являются необходимыми условиями для возможности определения перемещений по заданным компонентам деформации. Если рассматривается односвязанное тело, не имеющее сквозных полостей, то условия Сен-Венана оказываются достаточными для этой цели. Для многосвязанного тела условия Сен-Венана также позволяют определить перемещения (и, V, т), однако, в этом случае эти перемещения могут представиться как многозначные функции от X, у, г, и требуется введение дополнительных условий. Уравнение совместности деформаций всегда удовлетворяется, если найденные компоненты тензора деформаций имеют постоянное значение и являются функциями декартовых координат (так как вторая производная будет равна нулю).  [c.16]

Последнее соотношение показывает, что функция ф(Х[, Хг), назы-айемая функцией кручения Сен-Венана, должна быть гармонической функцией переменных a i и j 2 в области S, занятой поперечным сечением тела. Из третьей формулы (7.1) вытекает, что перемещение Из также должно быть гармонической функцией.  [c.174]

Функцию кручения Сен-Венана — величину, характеризующую перемещение точек поперечного сечения из его плоскости (деп-ланация), находят из дифференциальных соотношений  [c.91]

ВИЯМ (4.6). Далее по полученным функциям aij (Xk) находятся функции ги (Xh) из алгебраических уравнений (4.5) закона Гука. Так как при нахождении функций atjixii) удовлетворялись условия совместности Бельтрами—Мичелла, то функции etj (xj будут удовлетворять дифференциальным зависимостям Сен-Венана, т. е. необходимым и достаточным условиям интегрируемости уравнений (4.1). Тогда путем интегрирования уравнений (4.1) определяются перемещения щ (х ).  [c.81]

Эта задача была решена Сен-Венаном (1878) и А. Гринхиллом (1879). В 1912 р. А. Н. Динник решил эту задачу при помощи функций Беоселя. В дальнейшем она была изучена иными методами рядом других авторов. Рассмотрим решение Сен-Венана.  [c.164]


Эта задача была впервые (1900) решена Дж. Мичеллом полуобрат-Hbiw методом Сен-Венана. Предполагается, что, как и при кручении круглого бруса постоянного диаметра, перемещения произвольной точки К бруса в радиальном направлении ы, и в осевом направлении равны нулю. Перемещение же по касательной к окружности радиуса г в плоскости поперечного сечения есть некоторая искомая функция  [c.191]

Внутренние силы и моменты как функции ф легко найти по заданным внешним силам ti на торцах бруса, применив метод сечений. Та КИМ образом, внутренние силы и внутренние моменты можно считать известными и, следовательно, равенства (11.2 ) представляют собой интегральные условия, которым должны удовлетворять компоненты тензора напряжений в произвольном сечении бруса и, в частности, на его торцах. Условия (11.28) не учитывают закона распределения внешних сил ti на торцах бруса. Однако это несущественно, так как на основании принципа Сен-Венана напряжения в то чках бруса, достаточно удаленных от его торцов, практически не зависят от закона распределения сил ti, а зависят только от главного вектора и главного момента этих сил,  [c.371]

Если функция q s) задана, то можно сделать обратный переход, разбить дугу АВ на конечное число участков As и приложить в середине каждого участка сосредоточенную силу q s)As. Такой прием, состояп] ий в замене распределенной нагрузки конечным числом сосредоточенных сил, иногда применяется при расчетах, особенно когда используется вычислительная техника. Принцип Сен-Венана позволяет утверждать, что такая замена может сказаться на результатах лишь в непосредственной окрестности линии АВ.  [c.28]

Он является мерой затухания напряжений, которое качественно описывается принципом Сен-Венана, если только рассмотренная здесь система собственных функций способна представить любую самоуравновешенную нагрузку на концах, какая может быть приложена. Хотя это и так, на практике определение коэффициентов ведет к весьма трудоемким вычислениям. Чтобы избежать их, были протабулированы приближенные функции более простого вида, которые использовались в ряде работ ).  [c.79]

Точные решения, представленные функциями напрял-сений в форме (л), требуют, чтобы напряжения как на границе, так и всюду, изменялись по толщине параболически. Однако всякое отклонение от такого закона изменения напряжений, если он не меняет интенсивности усилия на единицу длины границы, будет менять лишь напряжения в непосредственной близости от границы, это следует из принципа Сен-Венана, стр. 57. Рассмотренный выше тип решения всегда представляет действительные напряжения, и компонентами <5-, Xxz< Туг на практике можно пренебречь, исключая области близкие к границе ).  [c.286]

Выяснить, может ли функция <р считаться произвольной функциех от X и у или же условия Сен-Венана налагают на нее некоторые ограничения и какие именно  [c.42]

Кручение. Для того чтобы завершить рассмотрение многослойных балок из композиционных материалов, полезно рассмотреть задачу кручения таких балок. Основное уравнение, определяющее с учетом принципа Сен-Венана функцию напряжения Ф в задаче кручения анизотропного бруса, было получено Хиермоном [31] и имеет вид  [c.141]

Волновая теория удара начала развиваться благодаря работам Бусинеску и Сен-Венана. Ими впервые была рассмотрена теоретическая задача о поперечном ударе двух твердых тел в предположении, что, полный период удара определяется временем, необходимым для прохождения через тело и обратного возвращения волны упругого сжатия. В предположении, что после удара груз движется вместе с балкой, с помощью метода Фурье было найдено решение в форме разложения динамического прогиба балки в ряд по фундаментальным функциям. Допущение, принятое в работе о совместном движении груза и балки после удара, не соответствует истине, так как скорость балки с момента соударения и до получения балкой наибольшего прогиба монотонно убывает до нуля, а скорость груза после удара монотонно возрастает. Кроме того, теория Сен-Венана и Бусинеску не учитывает местных пластических эффектов.  [c.8]

Поскольку, как уже отмечалось, любым непрерывным функциям ы, у и ш соответствуют всегда совместные деформации (уравнения Сен-Венана удовлетворяются тождественно, если в них вместо Ех,. .., Угх подстзвить выражения через и, v vi w согласно уравнениям Коши), условия сплошности при решении в перемещениях удовлетворяются автоматически.  [c.623]


Смотреть страницы где упоминается термин Функция Сен-Венана : [c.265]    [c.826]    [c.8]    [c.826]    [c.78]    [c.79]    [c.140]    [c.115]    [c.636]   
Курс теории упругости Изд2 (1947) -- [ c.240 ]



ПОИСК



Сен-.Вена

Сен-Венан

Стержни призматические Функция Сен-Венана

Функции напряжений в задаче Сен-Венан

Функция изгиба Сен-Венана



© 2025 Mash-xxl.info Реклама на сайте