Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние невесомости

Однако из изложенного не видно, чем же физически состояние тела при невесомости отличается от состояния, которое будет у тела, когда оно просто покоится на поверхности Земли или движется под действием каких-нибудь других сил, например силы тяги. Между тем, что в этих состояниях есть существенное различие, показывает эксперимент. Так, если в кабину падающего лифта или космического летательного аппарата поместить сосуд с жидкостью, не смачивающей его стенок (например, с ртутью), то при невесомости жидкость не заполнит сосуд, а примет в нем форму шара и сохранит ее и вне сосуда. Объясняется это, очевидно, тем, что при невесомости изменяется характер внутренних усилий в теле (в данном случае в жидкости). Следовательно, чтобы выяснить, в чем состоит отличительная особенность состояния невесомости, надо обратиться к рассмот ению возникающих в теле внутренних усилий.  [c.258]


Если на покоящееся или движущееся тело действует поверхностная сила Q P, то внутренние усилия в любом сечении тела будут меньше, чем при его покое на земной поверхности (явление недогрузки)-, если же действующая поверхностная сила Q>P (например, Q — сила тяги вертикально стартующей ракеты), то внутренние усилия в любом сечении тела будут больше, чем при его покое на земной поверхности (явление перегрузки). Наконец, когда Q=0 и тело движется свободно под действием только массовых сил (сил тяготения), т. е. находится в состоянии невесомости, то под действием этих сил никаких внутренних усилий в теле не возникает  [c.260]

В итоге приходим к следующим результатам 1) любое тело, размеры которого малы по сравнению е его расстоянием от центра Земли и которое движется в поле тяготения Земли свободно (т. е. под действием только сил тяготения) и поступательно, находится в состоянии невесомости, 2 состояние невесомости характеризуется тем, что при невесомости в теле не возникает внутренних усилий, вызываемых внешними воздействиями на это тело.  [c.260]

Таким образом, если сопротивление воздуха пренебрежимо мало, то любое падающее на Землю или брошенное с ее поверхности тело, движущееся поступательно, будет находиться в состоянии невесомости. В частности, в состоянии невесомости находятся движущиеся вне земной атмосферы искусственные спутники Земли или космические летательные аппараты и все находящиеся в них тела.  [c.260]

Местные системы отсчета. Рассмотрим тело А, движущееся в поле тяготения Земли (или другого небесного тела) свободно и поступательно с ускорением g (ускорение поля тяготения), т. е. находящееся в состоянии невесомости. Свяжем с телом А систему отсчета Охуг, движущуюся вместе с ним тоже поступательно (рис. 273), и рассмотрим движение материальной точки М массой т по отношению к этой системе отсчета. При этом область, где происходит движение, будем считать по сравнению с расстояниями от тела А и точки М до центра Земли (небесного тела) настолько малой, что в этой области Рис. 273  [c.261]

Понятие центр тяжести и формулы, определяющие координаты этой точки, связаны с весом, с тяжестью. Но в динамике встречается такое состояние механических систем, при котором подобное определение недостаточно. Вспомним, например, состояние невесомости ,  [c.292]

Следовательно, при свободном движении космического корабля космонавт находится в состоянии невесомости.  [c.169]

Динамическая теорема Кориолиса позволяет рассмотреть состояние невесомости, которое в частности возникает при движении космических кораблей как искусственных спутников вокруг Земли. При рассмотрении невесомости материальной точки целесообразно ее представлять как твердое тело, имеющее поверхность, которой оно может соприкасаться с другими телами. Будем предполагать, что скорости и ускорения всех точек этого тела одинаковы, а реакции соприкасающихся тел приводятся к равнодействующей.  [c.237]


В космическом корабле, который, кроме поступательного движения имеет также и вращение, каждая из материальных частиц корабля не находится в состоянии невесомости, хотя весь корабль как целое находится в состоянии невесомости. Для него главный вектор и главный момент поверхностных сил равны нулю, так как нет тел, с которыми корабль соприкасается своей поверхностью.  [c.239]

Материальная точка внутри кабины корабля находится в состоянии невесомости, пока она не соприкасается со стенками корабля и с другими телами, скрепленными с кораблем.  [c.239]

В состоянии невесомости находилось бы свободно падающее тело вблизи Земли, если бы не было действия воздуха. Невесомость можно  [c.239]

Динамическая теорема Кориолиса позволяет рассмотреть состояние невесомости, которое, в частности, возникает при движении космических кораблей как искусственных спутников Земли, При рассмотрении невесомости материальной точки целесообразно ее представлять как твердое тело, имеющее поверхность, которой оно может соприкасаться с другими телами. Будем предполагать, что скорости и  [c.257]

В состоянии невесомости находилось бы свободно падающее тело вблизи Земли, если бы не было действия воздуха. Невесомость можно создать искусственно вблизи Земли в герметизированной кабине летательного аппарата, заставив его с помощью двигателей совершать поступательное движение с ускорением g, равным ускорению от силы притяжения Земли.  [c.260]

Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением поэтому в корабле наблюдается явление невесомости.  [c.25]

Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости . Теорема об изменении кинетической энергии при относительном движении  [c.446]

В состоянии невесомости тело, находящееся под действием сил веса, сохраняет внутри космического корабля состояние равновесия или покоя относительно системы координат, связанной с космическим кораблем. Ясно, что при этом частицы тела освобождаются от взаимодействий и совершают движение относительно приближенно инерциальной системы отсчета вместе с кораблем как свободные материальные точки. Это исчезновение сил взаимодействия между частицами тела вызывает у космонавтов те субъективные ощущения, которые, по-видимому, породили термин невесомость .  [c.447]

Среди рассмотренных в предыдущем параграфе случаев совершенно особое место занимает случай, когда a=g и деформации тел отсутствуют. Отсутствие деформаций позволяет утверждать что никакие силы, кроме сил тяготения, на тело не действуют (если какая-либо сила действует, то это может быть только сила тяготения). Этот особый случай, когда на тело действует извне (со стороны каких-либо других тел) только сила тяготения и поэтому тела находятся в не-деформированном состоянии i), называется состоянием невесомости ).  [c.187]

Конечно, когда на тело вообще не действуют никакие силы, оно также не деформировано и находится в состоянии невесомости но этот специальный случай полного отсутствия сил не нуждается в особом рассмотрении и редко осуществляется.  [c.187]

Когда происходит соударение тел, возникают деформации и силы, принципиально ничем не отличающиеся от тех, которые возникают во всех случаях, когда при непосредственном соприкосновении тел эти тела сообщают друг другу ускорения однако эти силы действуют только кратковременно. Между тем лишь длительное отсутствие деформаций и упругих сил является характерным признаком состояния невесомости. Если происходит со ударение тел, находящихся в состоянии невесомости, между соударяющимися телами действуют упругие силы только до тех пор, пока тела не вышли из соприкосновения (при абсолютно упругом ударе) или не стали двигаться как одно целое (при абсолютно неупругом ударе) только в течение очень короткого времени соударяющиеся тела при соприкосновении сообщают друг другу различные ускорения. Но все же, строго говоря, для состояния невесомости характерно, что все тела испытывают одинаковое ускорение не все время, а исключая те короткие промежутки времени, когда происходят соударения, которые приводят к деформациям соприкасающихся тел, вызывающим появление упругих сил взаимодействия.  [c.188]


Характерные особенности поведения системы тел, находящихся в состоянии невесомости, можно продемонстрировать при помощи свободно падающей легкой рамки (такой же, какая применяется в опытах Любимова) с укрепленным на ней маятником (рис. 92). Пока рамка неподвижна, маятник либо покоится в отвесном положении, либо колеблется около этого положения. Если отклонить маятник от отвесного положения и одновременно освободить и маятник и рамку, они начнут падать с ускорением, близким к ускорению свободного падения, но маятник не будет изменять своего положения относительно  [c.188]

В момент, когда рамка и маятник начинают падать, на них действует только сила земного тяготения и наступает состояние невесомости. Поскольку в этот момент маятник не движется относительно рамки, то и все время, пока происходит свободное падение и сохраняется состояние невесомости, маятник не движется относительно рамки. В таком отклоненном от отвеса положении маятник мог бы покоиться относительно неподвижной системы координат только в том случае, если бы сила тяготения отсутствовала. Этот опыт демонстрирует еще одну характерную черту состояния невесомости отсутствие выделенного направления вниз , которое в обычных условиях определяется направлением силы тяготения направление вниз определяется положением отвеса, между тем маятник (отвес) в описанном опыте может занимать любое положение.  [c.189]

Видоизменив описанный опыт, можно продемонстрировать характерную черту относительного движения тел, находящихся в состоянии невесомости. Когда ра.мка неподвижна, а маятник колеблется, то он проходит через отвесное положение с некоторой скоростью. Если в этот момент освободить рамку, то она начнет падать, а маятник будет продолжать вращаться вокруг оси с той же угловой скоростью, какой он обладает в момент начала падения рамки (рис. 92,6). Правда, в этом случае при падении рамки и вращении маятника штанга, удерживающая тело маятника на окружности, деформирована и сообщает ему центростремительное ускорение (деформировано и тело маятника, действующее на штангу с центробежной силой ). Но движение маятника все же сохраняет ту особенность, которая характерна для движения тел, находящихся в состоянии невесомости движение это происходит так, как если бы сила тяготения отсутствовала. Представим себе, что в момент, когда началось свободное падение рамки и маятника, соединяющая тело маятника с рамкой штанга исчезла так как при этом наступило состояние невесомости, то тело маятника продолжало бы двигаться относительно рамки горизонтально с той начальной скоростью, какую оно имело в момент, когда наступило состояние невесомости (относительно неподвижной системы отсчета тело маятника двигалось бы по параболе).  [c.189]

НИХ органов друг на друга, давление крови на стенки сердца и сосудов и т. п. В состоянии невесомости, наоборот, отсутствуют те деформации и связанные с ними силы давления частей тела космонавта и его внутренних органов друг на друга, которые привычны для человека, поскольку в нормальных условиях он не испытывает вертикальных ускорений, сравнимых по величине с ускорением силы тяжести не требуется прилагать мышечных усилий для того, чтобы удерживать руки или ноги в отклоненном от направления оси тела положении, — без всякого усилия со стороны человека рука или нога остаются в отклоненном от направления оси тела положении (подобно не имеющему начальной скорости маятнику в описанном выше опыте с маятником на падающей рамке) у космонавта исчезает представление о том, где верх и где нил (хотя направление вниз как направление к центру Земли полностью сохраняет свой геометрический смысл).  [c.191]

Когда космический корабль опускается на Землю и входит в более плотные слои атмосферы, снова становится заметным сопротивление воздуха, направленное навстречу скорости. Кроме того, для уменьшения скорости корабля часто применяют двигатели, создающие силу тяги, также направленную против скорости. Сила сопротивления воздуха и сила тяги тормозящих двигателей нарушают состояние невесомости, и при спуске корабля возникают перегрузки такого же характера, как и при подъеме корабля (конечно, величина и направление ускорения при спуске могут значительно отличаться от величины и направления ускорения при подъеме). Однако поскольку и в том и в другом случае ускорение будет иметь большую вертикальную составляющую, направленную вверх, то как при подъеме, так и при спуске возникают перегрузки такого характера, как будто сила земного тяготения сильно возрастает.  [c.191]

Конечно, совершенно такое же объяснение можно привести для состояния невесомости, которое мы наблюдали в лифте, движущемся вниз с ускорением g ( 43). Так как лифт движется вниз с ускорением g, то, относя движение тел, находящихся внутри лифта, к системе отсчета, связанной с лифтом, мы должны учитывать, что на все эти тела, кроме поля тяготения напряженностью g, действует поле сил инерции напряженностью —g. Силы тяготения и силы инерции полностью компенсируют друг друга, вследствие чего для тел, находящихся внутри лифта, наступает состояние невесомости.  [c.357]

Полная компенсация сил инерции и сил тяготения необходима не только для того, чтобы наступило состояние невесомости, но и чтобы это состояние могло сохраняться достаточно долгое время. Это Б одинаковой мере относится как к лифту, так и к космическому кораблю и ко всем аналогичным случаям мы поясним это обстоятельство на конкретном примере космического корабля.  [c.357]

Как уже было отмечено в 43, сила тяготения является массовой силой и поэтому всем элементам тела сообщает одинаковые ускорения (конечно, при условии, что это тело находится в однородном поле сил тяготения). Массовой является и сила инерции (так как она тоже пропорциональна массе элемента тела, на который действует), и поэтому, если на тело действует только сила инерции, то она также не вызывает деформаций тела. Таким образом, если на тело одновременно действуют сила тяготения и сила инерции, но не действуют никакие другие силы, то тело находится в состоянии невесомости. При этом совсем не обязательно, чтобы силы инерции и силы тяготения как раз компенсировали друг друга. Но если силы инерции и силы тяготения не компенсируют друг друга, то поведение тела в космическом корабле меняется.  [c.357]


Как уже было сказано (см. 20), вес G = mg всякого материального тела зависит от местонахождения этого тела на земном шаре, и ускорение g падающих тел не вполне одинаково в различных местах. Это обстоятельство вследствие небольших (сравнительно с Землей) размеров взвешиваемого тела тоже никак не может повлиять на положение его центра тяжести. Но бывает такое состояние материальных тел и механических систем, при котором понятие вес вообш,е теряет смысл. Вспомним, например, состояние невесомости, о котором рассказывают наши космонавты. Кроме того, в мировом пространстве существуют области, где в состоянии невесомости пребывает всякое тело независимо от его движения например, точка пространства, в которой материальное тело притягивается к Земле и к Луне с равными и противоположно направленными силами. В таких случаях теряет всякий смысл и наше определение центра тяжести как центра параллельных сил, но сама точка продолжает существовать и не теряет своего значения. Поэтому целесообразно определять эту точку в зависимости не от веса, а от массы частиц. Понятие центр масс шире понятия центр тяжести, так как масса не исчезает даже при таких обстоятельствах, при которых вес неощутим. Понятие центр масс имеет применение во всякой системе материальных точек, тогда как понятие центр тяжести выведено для системы сил, приложенных к одному неизменяемому твердому телу  [c.135]

К этой группе следует отнести множество издавна известных явлений. Например, частицы брошенного свободно камня будут находиться в состоянии невесомости , если при движении камня для его частиц будет выполняться условие (IV.227а) или (1У.227Ь). Условие (1У.227Ь) выполняется для частиц камня при предположении, что камень является абсолютно твердым телом.  [c.447]

Происхождение этого названия связано с тем, что когда в телах отсутствуют деформации, то не возникают силы, действующие со стороны одной части тела на другую часть того же тела или со стороны одного тела на соприкасающееся с ним другое тело. Но эта последняя сила, в частности сила, с которой тело давит на подставку или натягивает подвес, как раз и называется силой веса. Это название ес-тествен1ю распространить и на силы, с которыми верхняя часть тела, лежащего на подставке, давит на нижнюю его часть это есть сила веса верхней части тела. Название состояние невесомости подчеркивает, что в этом состоянии отсутствуют силы веса в том расширенном смысле, который указан выше, т. е. упругие силы, действующие между частями одного и того же тела или между соприкасающимися телами и обусловленные деформациями, которые возникли в результате движения тел под действием сил тяготения и каких-либо других сил ).  [c.187]

Помимо характерной черты состояния невесомости, которая подчеркивается в названии (отсутствие деформаций и обусловленных ими сил веса), это состояние обладает и другой характерной чертой, касающейся движений в системе тел, находящихся в состоянии невесомости. Так как единственная действующая на систему тел сила тяготения сообщает всем телам одинаковое ускорение, не вызывая при этом деформации тел, т. е. не вызывая появления упругих сил, то тела движутся друг относительно друга так, как будто сила тяготения вооб-  [c.187]

Итак, в состоянии невесомости сила тяготения сообщает всем телам одинаковые ускорения, но при этом не изменяет состояния тел (тела не испытывают деформации) и не изменяет характера движения одного тела оттасительно другого (тела движутся одно относительно другого без ускорений). Словом, в состоянии невесомости сила тяготения сообщает всем телам одинаковое ускорение, но во всем остальном (деформации, относительные движения) тела ведут себя так, как будто сила тяготения отсутствует происходит так не потому, что сила тяготения перестает действовать , а именно потому, что сила тяготения делает свое дело — сообщает всем телам одинаковое ускорение.  [c.189]

Состояние невесомости наступает в баллистических ракетах ) и космических кораблях после того, как прекратилась работа двигателей и ракета или космический корабль вышли из плотных слоев атмосферы. Вначале под действием силы тяги реактивных двигателей (см. 124), направленной вверх, ракета или корабль движутся с большим ускорением о и набирают вертикальную скорость. В это время на корабль и находящиеся в нем тела, помимо силы земного тяготения и силы тяги двигателей, действует сила сопротивления воздуха, направленная против скорости корабля, т. е. ВНИИ, и несколько уменьшающая ускорение корабля. Но все же это ускорение а по величине значительно превосходит ускорение свободного падения g (например, по данным иностранной печати а может достигать 9—10 ). В этом случае корпус корабля и все тела в кабине корабля будут находится в таком же состоянии, как тела, взвешиваемые в кабнне лифта, движущегося кверху с ускорением а.  [c.190]

После того как ракета или космический корабль достигли требуемой большой скорости, которая в зависимости от назначения ракеты или космического корабля должна быть различной (см. 76), двигатели выключаются если при этом космический корабль уже поднялся на такую высоту, где плотность атмосферы очень мала и поэтому она не создаег сколько-нибудь заметного сопротивления движению, то корабль и все заключенные в нем тела находятся под действием только сил тяготения Земли, Луны, планет и Солнца (какие из этих сил практически следует учитывать — зависит от места нахождения корабля). Вследствие этого для кораб.пя и всех находящихся в нем тел наступает состояние невесомости. Исчезают деформации тел и обусловленные ими силы, действующие со стороны частей тела друг на друга и со стороны одних тел на другие например, тела перестают давить на подставки, на которых они покоятся, и если тело приподнять над подставкой, то оно будет покоиться в таком положении ( висеть в воздухе) жидкость, налитая в сосуд, перестанет давить на дно и стенки сосуда, поэтому она не будет вытекать через отверстие внизу сосуда и ее надо будет через это отверстие выдавливать отвесы будут покоиться в любом положении, в котором их остановили. Тела, которым сообщена относительно кабины корабля начальная скорость в любом направлении, будут двигаться в этом направлении прямолинейно и равномерно (если пренебречь сопротивлением воздуха, находя-Н1егося в кабине), пока не придут в соприкосновение с другими телами, после чего возникнут явления типа соударения.  [c.190]

Эти же причины (измеиение природы сил, действующих на корабль) вызывают появление и исчезновение состояния невесомости в космическом корабле. Мы уже рассматривали явление невесомости (в 43), не пользуясь при этом представлением о силах инерции. Это значит, что при рассмотрении состояния невесомости мы не пользовались [шрпусом космического корабля как системой отсчета (так как если бы мы пользовались этой системой отсчета, то неизбежно появились бы действующие в этой системе отсчета силы инерции, которые нам бы пришлось учитывать). Теперь, имея возможность пользоваться корпусом космического корабля как системой отсчета и учитывая силы инерции, мы в состоянии изложить вопросы о движении тел внутри и вблизи космического корабля, в частности, вопросы о возникновении и исчезновении невесомости и перегрузок, более четко, чем это можно было сделать раньше.  [c.355]


Смотреть страницы где упоминается термин Состояние невесомости : [c.240]    [c.258]    [c.292]    [c.292]    [c.169]    [c.187]    [c.187]    [c.188]    [c.189]    [c.191]    [c.357]    [c.358]   
Смотреть главы в:

Физические основы механики  -> Состояние невесомости


Краткий курс теоретической механики 1970 (1970) -- [ c.325 , c.328 ]



ПОИСК



Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости. Теорема об изменении кинетической энергии при относительном движении

Жидкость в сосуде.в состоянии невесомости

Невесомость

Особенности поведения двухфазной системы в состоянии невесомости

Принцип эквивалентности Состояние невесомости



© 2025 Mash-xxl.info Реклама на сайте