Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пленки уплотнение

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ЖИДКОСТНОЙ ПЛЕНКЕ УПЛОТНЕНИЙ  [c.133]

Наиболее светопрочными оказались пленки, уплотненные в смеси солей. Это имеет значение для таких красителей, которые дают нестойкую к свету пленку при обычном уплотнении в дистиллированной воде (синий 23М и желтый 3). Для всех остальных красителей достаточно уплотнение в дистиллированной воде в течение 30 мин.  [c.130]

Повышение износостойкости деталей достигается защитой их от абразивного воздействия (уплотнения) применением специальных смазок и присадок к смазочным материалам, позволяющих создавать сервовитную пленку на всех трущихся деталях созданием условий жидкостной смазки (см. 3.65) нанесением на детали тончайшей пленки из порошковых смесей применением вибрационного накатывания, позволяющего создавать оптимальную шероховатость трущихся поверхностей деталей, и пр.  [c.263]


Рабочая жидкость гидропередачи выполняет свой основную функцию промежуточной среды и одновременно является смазочным веществом. В связи с этим к ней предъявляется противоречивые требования. Для уменьшения утечек жидкости через уплотнения желательно подобрать жидкость, образующую прочную масляную пленку. Но для уменьшения трения жидкости и гидравлических потерь целесообразно подбирать жидкость с малой вязкостью.  [c.322]

Рабочие жидкости в уплотнениях должны создавать прочную масляную пленку. Следует при этом отметить, что значительное увеличение прочности масляной пленки ухудшает работу гидроаппаратуры.  [c.322]

С целью уменьшения внутренних перетоков в зазорах между торцовыми поверхностями шестерен и втулок предусмотрена автоматическая компенсация торцовых зазоров. Достигается это следующим образом. Рабочая жидкость из камеры нагнетания по каналу поступает в полость В между подвижными втулками 5, резиновым уплотнением 6 с направляющей пластиной 7 и крыщкой 11 и прижимает втулки к торцам шестерен, ликвидируя зазор между ними. Но со стороны шестерен на втулки также действует рабочая жидкость. Однако усилие с этой стороны несколько меньше, так как меньше площадь, на которую действует давление. Разность усилий, а также свойства сохранения масляной пленки обеспечивают необходимый зазор. Утечка рабочей жидкости из полости В предотвращается уплотнительными кольцами 8 и 9.  [c.16]

Иногда наблюдающееся при деформациях сжатия уменьшение удельного сопротивления объясняется вторичными явлениями — уплотнением металла, разрушением оксидных пленок и т. д..  [c.14]

Изготавливают коррозионностойкие трубы, тройники, уплотнения, прокладки, шланги, пленки, оболочки контейнеров и емкостей для хранения сильных кислот, электроизоляторы.  [c.130]

Третья стадия — герметизация зон —. характеризуется наибольшей величиной уплотнения. На поверхности зоны образуется сплошная пленка расплава, каналы разобщаются и превращаются в замкнутые полости. Пористость внутри зоны снижается до 5—20 %. Формируется краевой угол растекания расплава по подложке. Резко уменьшается микрошероховатость. Слой покрытия в пределах зоны утрачивает газопроницаемость по механизму фильтрации, поэтому выделение газа из подложки либо образование его на межфазной границе приводит к возникновению газовых включений. Характерный интервал вязкости этой стадии 10 —10 П.  [c.30]

Характер изменения сопротивления и емкости ингибированного алкидного покрытия и алкидно-нитратцеллюлозного покрытия резко различается. Сначала наблюдается резкое, а затем постепенное увеличение сопротивления покрытия с одновременным уменьшением емкости (кривая 4). Это, очевидно, обусловлено тем, что процессы взаимодействия ингибитора с пленкообразующим и поверхностью металла в алкидных покрытиях не заканчиваются на первой стадии, а продолжаются в течение относительно длительного времени, что приводит в дальнейшем к уплотнению пленки и связано, по-видимому, с возникновением на поверхности металла пассивной пленки.  [c.176]


Непрерывная шариковая очистка способствует уплотнению и равномерности образующейся оксидной пленки, поверхность которой становится при этом блестящей, а толщина уменьшается до нескольких микронов.  [c.204]

Трудную проблему представляет выбор смазочного материала для подшипников жидкостного трения рабочих клетей прокатных станов. Принимая во внимание высокие нагрузки, действующие на валки, трудно обеспечить жидкостное трение, хотя для этого требуется очень малая толщина масляной пленки вследствие незначительных радиальных зазоров и весьма высокой чистоты обработки рабочих поверхностей цапфы и вкладыша. Для смазки этих подшипников обычно применяются хорошо очищенные масла различной вязкости. При выборе масла для подшипников жидкостного трения рабочих клетей нужно принимать во внимание то, что в масло часто попадает большое количество воды и мелкая окалина, особенно после длительной работы стана, когда уплотнения подшипников сработаются.  [c.24]

Алюминий — металл серебристого цвета с легким синеватым оттенком. Он обладает большой пластичностью, уступая в этом отношении только золоту и серебру. Алюминий легко окисляется с образованием окисной пленки повышенной плотности, предохраняющей его от дальнейшего окисления, поддается механической обработке, что позволяет изготовлять различные по форме поперечного сечения прокладки. Он применяется в гидравлических и пневматических системах для уплотнения соединений трубопроводов при давлении до 60-10 Н/м .  [c.39]

ДЭС в установившемся режиме трения претерпевает циклическое изменение концентрации анионов и катионов в диффузной и плотной частях. Процесс трения оказывает деполяризующее действие на поверхностные поляризованные слои и способствует зачистке поверхности. Это приводит к разрядке большинства частиц, их осаждению, уплотнению под нагрузкой и переходу в металл сервовитной пленки. При этом вместе с частицей увлекаются молекулы ПАВ, адсорбированные на ней. Эти молекулы в последующем обусловливают пористость пленки, ее эластичность и дополнительную смазку, а главное, адсорбционное действие на пленку. Весьма вероятно, что они удлиняют время существования вакансий при адсорбции на них.  [c.12]

Исследования показали, что при смазке глицерином в торцовых уплотнениях возникает режим ИП, характеризующийся образованием на обеих трущихся поверхностях тонкой медной пленки, что способствует уменьшению коэффициента трения за счет уменьшения адгезионной составляющей сил трения. Образование медной пленки происходит постепенно, о чем свидетельствует монотонное уменьшение коэффициента трения в процессе испытания. Следовательно, при длительной работе торцовых уплотнений наиболее полно проявляются преимущества процесса ИП.  [c.113]

Испытания показали, что осаждение меди на трущиеся поверхности в процессе трения является эффективным способом снижения износа и повышения срока службы торцового уплотнения (рис. 90). Повышение износостойкости радиальных подшипников скольжения методом ИП достигнуто применением металлоплакирующей смазки с добавлением сернокислой меди, в которую для интенсификации процесса плакирования дополнительно вводится серная кислота. В результате применения сернокислого смазочного материала поверхности трения подшипников покрываются тонкой медной пленкой, которая препятствует задирам и схватыванию. Герметический привод реактора по условиям технологического процесса работает с частотой вращения до 3000 об/мин со смазкой водой. Подшипники привода изнашиваются в результате усталостного разрушения и динамических ударов при пусках. Медная пленка, образованная при ИП, повышает их износостойкость, снижает вибрации.  [c.180]

Применение лабиринтных уплотнений также значительно сокращает количество абразивных частиц, проникающих в зону трения. Так, например, лабиринтные уплотнения в шарнирах литой гусеницы повысили износостойкость пальцев и в гулок в 2,5 раза. Лабиринтное уплотнение в этом шарнире создается в результате того, что концы средней втулки (более длинной, чем проушина звена) входят на 9—10 мм в крайние проушины смежного звена цепи. Кроме того, рекомендуется на трущихся поверхностях прорезать канавки, соединяющиеся общим каналом в каждом из тел трущейся пары. Абразивные частицы, оказывающиеся в зоне трения, через эту систему отверстий могут быть удалены промывкой или продувкой. Периодическое совпадение канавок обеих деталей может вызвать пульсацию смазочной пленки, что будет способствовать отделению абразивных частиц от истирающихся поверхностей.  [c.178]


Для повышения стойкости против коррозии детали после оксидирования и тщательной промывки в воде подвергают специальной обработке для уплотнения оксидной пленки, чтобы закрыть доступ окружающей среды к металлу через поры пленки. Для этого детали погружают в расплавленный парафин или воск, покрывают их олифой, лаками, наполняют поры хромата-ми и др.  [c.336]

Латексный поливинилхлорид Прочные пластикаты и мягкие пленки Изоляция, искусственная кожа, фольга, мягкие пленки Изоляция, искусственная кожа, щетина, фольга Техническая паста для уплотнения  [c.100]

Магний — пластичный металл блестящего серебристо-белого цвета. Плотность литого магния 1,737 г см и уплотненного 1,739 г/сл . Температура плавления 651 С, кипения 1107° С, скрытая теплота плавления 70 кал/г. Теплопроводность 0,37 кал см-сек удельная теплоемкость в кал г-°0. 0,241 при 0° С 0,248 при 20° 0,254 при 100 С, и 0,312 при 650° С. Коэффициент линейного расширения 25-10 +0,0188 ° (в пределах от О до 550° С). Удельное электросопротивление при 18° С 0,047 ом-мм Ы. Стандартный электродный потенциал 2,34 в. Электрохимический эквивалент 0,454 г/а ч. Магний неустойчив против коррозии, образующаяся поверхностная окисная пленка не защищает массу металла. При повышении температуры, особенно, если  [c.82]

СТЫВШИЙ слой металла 6, надежно герметизирующий внутреннюю полость насоса и препятствующий вытеканию металла из него. За счет мощности трения и тепла, передаваемого по валу, вокруг него создается весьма тонкая пленка жидкого металла, которая в виде чулка выдавливается вдоль вала наружу, где застывает и разрушается. Протечки металла за счет этого незначительны. Для уменьшения температурных напряжений полость охлаждения выполнена в отдельном узле — холодильнике 4, который с помощью накидной гайки 2 натягивается на внешнюю коническую поверхность втулки 1, что улучшает теплопередачу по сравнению с теплопередачей при посадке на цилиндрическую поверхность. Выбор длины охлаждаемого участка I зависит от перепада давления на уплотнении. Приближенно минимальную длину охлаждаемого участка можно определить из выражения  [c.85]

Гребешковые уплотнения. Цель установки гребешковых уплотнений — разбить масляную пленку, ползущую по валу, и отбросить масло действием центробежных сил в кольцевую полость, откуда оно стекает в корпус по дренажным отверстиям.  [c.102]

Для охлаждения вентилей использованы групповые водяные охладители на пять вентилей каждый. Охладитель выполнен в виде разборной конструкции, состоящей из металлического бачка и стеклотекстолитовой платы с встроенными латунными охладителями. Бачок и плата соединяются между собой через резиновое уплотнение. Латунные охладители электрически изолированы от воды тонкой пленкой лака, что позволяет избежать разрушения охладителей вследствие электролиза.  [c.214]

Конденсационная турбулентность имеет прямое отношение к формированию жидких пленок в решетках турбин, так как способствует поперечному переносу вначале образовавшихся мелких капель примесей, а затем и капель воды преимущественно к стенке (во внутреннюю часть пограничного слоя), где продольные скорости невелики. Очевидно, что сложный процесс образования пленок включает и другие механизмы (кроме турбулентно-инерционного переноса капель в поперечном направлении). Существенное значение имеют поля центробежных сил, возникающие в криволинейных межлопаточных каналах и в закрученном потоке за сопловой и рабочей решетками. Весомый вклад в этот процесс создает периодическая нестационарность, обусловленная взаимодействием неподвижных и вращающихся решеток система волн разрежения и уплотнения воздействует на мелкие капли и изменяет траектории их движения. Пространственная неравномерность полей скоростей в межлопаточных каналах и зазорах между решетками, взаимодействие капель с входными кромками являются также причинами расслоения линий тока несущей фазы и траекторий капель, что способствует контактам капель с профилями и торцевыми поверхностями каналов.  [c.89]

Вначале было автоматизировано производство наименее сложных изделий, которые можно было формовать в простых формах и продавать потребителям в больших количествах. К таким изделиям относятся гладкие и гофрированные панели. В машину на ленточном транспортере поступали маты рубленой стекло-пряжи, в них вводили смолу и катализатор, и смесь отверждалась в печи над транспортером. Затем были созданы машины, которые автоматически выполняли следующие операции получение матов рубленой стеклопряжи из ровинга, перенос этих матов на подложку из полиэтиленовой или целлофановой пленки, введение окрашенной смолы, покрытие сверху вторым слоем пленки, уплотнение смеси смолы со стекловолокном между двумя пленками, профилирование композиционного материала протяжкой его через фасонные шаблоны, установленные в печи. Когда полностью отвержденный материал выходил из печи, его нарезали на панели передвижными пилами с водяным охлаждением, управление которых осуществлялось по перфокартам, введенным в управляющее устройство. Отходы и обрезки кромок поступали в мусоросборники, а панели перемещались на обдирочно-обточный станок для удаления пленок и воды и подавались оттуда сухими на браковочный стол.  [c.73]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]


Повышение износостойкости деталей достигается применением новых износостойких и коррозионно-стойких материалов (например, применение износостойкого сплава ИСЦ-1 увеличивает срок службы деталей в 20 раз по сравнению с традиционными материалами) защитой от абразивного воздействия (уплотнения) применением специальных смазок и присадок к смазочным материалам, позволяющим создать сервовитную пленку на всех трущихся деталях ( эффект безызносности ) применением плазменных износостойких и антикоррозионных покрытий покрытий из алмазной пленки газотермического напыления порошков из твердых сплавов лазерного упрочнения , вибрационного обкатывания (см. 2.5).  [c.33]

Стойкость против окисления образцов, сплицировапных в порошковых смесях, после 20 ч испытаний при 1073 К оказалась почти в три раза выше по сравнению со стойкостью непокрытых образцов (рис. 2). При дальнейших испытаниях образцы без покрытий разрушаются. У силицированных же образцов наибольшая скорость окисления наблюдается в первые 20—30 ч испытаний, после чего наблюдается снижение скорости окисления. Это, по-видимому, связано с формированием пленки двуокиси кремния в поверхностной зоне образцов и ее уплотнением. После 30-часового окисления пленка эффективно защищает углеродистую сталь. Формирование в поверх-  [c.195]

Одни исследователи считают, что защитное действие протекторных грунтовок связано с катодной защитой и дополнительным влиянием продуктов анодного растворения. Другие установили, что в начальный период осуществлялась электрохимическая защита, а со временем начали проявляться защитные свойства благодаря уплотнению пленки нерастворимыми продуктами коррозии цинка во внешних слоях. Было также показано, что в тонких покрытиях (до 10—20 мкм) цинк играет в основном роль протектора, но срок службы такого покрытия ограничивается продолжительностью растворения цинка. В более толстых покрытиях цинковый наполнитель вначале защищает металл за счет протекторного действия, а затем (в течение более длительного времени) — вследствие уплотнения поверхностного слоя покрытия труднорастворимыми продуктами коррозии цинка. Однако это не исключает выявления местного протекторного действия в случае нарушения покрытия и доступа электроли-  [c.146]

Для уплотнения эматалевой пленки детали после обработки кипятят в дистиллированной воде.  [c.337]

Текстильные материалы тканые (ткани, ленты, ремни) и материи (ткани с поверхностными пленками на основе растительного масла, эфира целлюлозы, синтетической смолы или каучука), крученые (нитки, шнуры, веревки и канаты) и рыхловолокнистые (войлок, вата, пакля, маты и т. п.) широко используются в машиностроении для передачи усилий, обшивки и зачехления, прокладок и уплотнений, полирования, фильтрации, тепло-звуко-, электроизоляционных и многих других целей.  [c.323]

Углеграфитовые и металлографитовые антифрикционные материалы (табл. 7) применяют в качестве вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, поршневых и радиальных уплотнений. Они способны работать без смазки, при высоких или низких температурах, больших скоростях, в агрессивных средах и т. д. При работе пары металл—углеграфит изнашивается графитовая деталь. На поверхности металла образуется графитовая пленка, а на графитовой детали — блестящий слой из ориентированных кристаллов графита. Именно образование этих поверхностных слоев обеспечивает устойчивый режим скольжения и малый коэффициент трения.  [c.385]

Краски масляные и алкидные (ГОСТ 10503—63) — суспензии пигментов в различных олифах с введением наполнителей, сиккативов и других компонентов, или без них, изготовленные разведением густотертых красок или перетиром на шаровых мельницах исходных компонентов. Для наружных работ выпускают марок МА-11 —на натуральной льняной или конопляной олифе, МА-15 — на уплотненных олифах, ГФ-13 — на глифталевой и ПФ-14 — на пентафталевой олифах. Для внутренних работ используют краски марок МА-21, МА-22, МА-25, ГФ-23 и ПФ-24. Буква н в марке, например МА-15н, означает, что в состав введен наполнитель. Наиболее общие свойства данных л. к. м. определяются следующими покателями вязкость по ВЗ-4 при 20° С в пределах 80— 160 сек-, степень перетира 40—90 мк высыхание практическое — 24 ч твердость пленки 0,1—0,14, Цвета указанных красок определяются пигментом, белилами титановыми,  [c.209]

Магний — пластичный металл блестящего серебристо-белого цвета. Плотность литого магния 1,737 г/см и уплотненного 1,739 г/см . Температура плавления 65ГС, кипения — 1107° С. Скрытая теплота плавления 70 кал/г. Теплопроводность 0,376 кал/(см-с-°С). Удельная теплоемкость, кал/(г-°С 0,241 — при 0° С 0,248 — при 20° С 0,254 — при 100 С и 0,312 — при 650° С. Коэффициент линейного расширения 25 10 +0,0188 г° (в пределах О—550° С). Удельное электрическое сопротивление при 18° С 0,047 Ом/(мм /м). Стандартный электродный потенциал 2,34 В. Электрохимический эквивалент 0,454 г/(А-ч). Магний неустойчив против коррозии, образующаяся поверхностная окисная пленка не защищает массу металла. Магний горюч, порошок или тонкая лента из него сгорают в воздухе с ярким ослепительным пламенем. Используется в магние-термии, в качестве твердого топлива — в реактивной технике. При повышения температуры возможно самовоспламененпе магниевого порошка или стружки. Магний устойчив против щелочей, фтористых солей, плавиковой кислоты и т. д. Чистый магний в качестве конструкционного материала почти не ис-по.льзуется, но является основой эффективных магниевых сплавов. Применяется в производстве стали, высокопрочного (магниевого) чугуна, для катодной защиты стали.  [c.145]

Нормальным режимом работы торцового УВГ большинство специалистов считают полужидкостное трение. Однако трудно лровести границу между трением жидкостным и полужидкостным, когда уплотнение имеет малую протечку, а уплотнительная среда— большую вязкость. Толщина смазочной пленки от 3 до 10 мкм обеспечивает полное несоприкосновение поверхностей скольжения. Как указывалось выше, учет величины и распределение давления в зазоре чрезвычайно важны при проектировании уплотнения. На основании имеющихся опытных данных для уплотнения, работающего на масле, можно рекомендовать коэффициент нагруженности = 0,75.  [c.89]

Отработка торцовых уплотнений для ГЦН с контролируемыми протечками. Методика отработки гидростатических и гидродинамических торцовых уплотнений достаточно полно изложена в [38, 42, гл. 3]. Здесь остановимся лищь на некоторых особенностях отработки гидродинамического торцового уплотнения с малыми протечками (не более 0,05 м ч). Главной проблемой при конструировании такого уплотнения, как уже упоминалось ранее, является обеспечение во всех режимах работы стабильной жидкостной смазывающей пленки в уплотняющем подвижном контакте, что гарантирует безызносный режим трения. Это оказалось непосредственно связано со стабильностью макрогеометрии уплотняющих поверхностей, независимо от применяемых материалов [9, 10]. Задача стабилизации макрогеометрии оказалась чрезвычайно трудной потому, что основу работоспособности торцовых уплотнений составляет контактирование оптически плоских поверхностей. При этом значение рабочего зазора лежит в пределах от долей микрона до нескольких микрон, и нарушение макрогеометрии даже на несколько микрон приводит к существенному изменению характеристики уплотнения. При достижении некоторого предела это нарущение вызывает выход уплотнения из строя. Между тем термические и силовые деформации деталей, образующие контактирующие поверхности, и деталей, соприкасающихся с ними, в условиях высоких давлений и переменных температур, а также больщих диаметров, характерных для уплотнения ГЦН АЭС, составляют сотни микрон, т. е. превышает рабочий зазор в сотни и даже в тысячи раз. Таким образом, конструкция уплотнений должна быть такой, чтобы эти гигантские по сравнению с рабочим зазором перемещения деталей не приводили к искажению рабочих поверхностей даже на несколько микрон. Выяснение указанных обстоятельств предопределило принципиальный подход к методике отработки уплотнения вала (см. рис. 3.34) для модернизированного насоса реактора РБМК. При выборе материала для рабочих колец, образующих уплотняющие поверхности, было учтено, что лучшие результаты при испытаниях и эксплуатации показывали силицированные графиты, несколько модификаций которых прошли испытания на первом этапе на спе-  [c.238]


Силь4юнные уплотнения 12 — 687 Число оборотов — Зависимость от холодопроиз-водительности 12 — 685 Турбомашины малые — Приводы 13—188 — Параметры турбин для привода 13—188 Турбонасосы паровозные 1-ТН 13 — 298 Турбулентное стекание пленки при конденсации в холодильных машинах 12 — 653 Турбулентность естественная — Замер 1 (1-я) —426 Турнера приборы 6 — 247 Тюки сенные — Вес — Зависимость от влажности 12—193 Тяга электрическая 13 — 414 Т ягачи — Опорно-сцепные устройства 11 — 177 Кинематика II — 178  [c.314]

Для смаэки механизмов в летнее время п защиты от коррозии металлических поверхностей. не защищенных покрытиями Для смазки механизмов, защиты от коррозии металлических поверхностей, а также для технических целей в качестве мягчителя резиновых смесей Для смазки азроиа-вигационных, оптических н радиоприборов. а также для самолетов, работ ю-щих в интервале температур от — 60 до + 55 С Для смазки уплотнений бензопроводов Для смазки приборов и механизмов при повышенных требопа-ниях к прочности смазочной пленки  [c.302]

Стенд III (риа. 2,1) контур влажного пара с оптическим прибором Теп-лера и интерферометрической приставкой к нему — обеспечен несколькими рабочими частями. Одна из них предназначена для исследования скачков конденсации и скачков уплотнения в сверхзвуковом потоке влажного пара, а также спектров обтекания различных тел (рис. 2.3, a)j. Другие рабочие части предназначены соответственно для исследования двухфазного пограничного слоя и пленок <рис. 2.3,6), движения влажного пара в йлоских соплах и диффузорах, а также  [c.23]


Смотреть страницы где упоминается термин Пленки уплотнение : [c.140]    [c.416]    [c.41]    [c.137]    [c.114]    [c.96]    [c.178]    [c.139]    [c.48]    [c.79]    [c.71]    [c.234]   
Защита от коррозии на стадии проектирования (1980) -- [ c.264 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте