Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания вынужденные конструкций

Кастильяно теорема 269, 273 Колебания вынужденные конструкций 440 Кольцо круговое под равномерным давлением 333  [c.453]

Здесь мы лишены возможности останавливаться на расчете колебаний элементов конструкций с учетом различных видов рассеяния энергии и ограничимся лишь случаем вынужденных колебаний, когда рассеяние энергии пропорционально скорости.  [c.544]


Функция Грина решетчатой конструкции. Применение групповых динамических жесткостей дает возможность получить простые формулы для расчета вынужденных колебаний решетчатой конструкции и, в частности, найти ее функцию Грина.  [c.185]

Рассмотрим задачу о вынужденных колебаниях конструкции в системе координат х, у, которая движется поступательно относительно инерциальной системы X, Y (рис. 64) [56—59]. Поступательное движение подвижной системы координат определяется функциями хо (О и г/о t), рассматриваемыми как стационарные независимые случайные функции времени с известными статистическими характеристиками [известны закон распределения вероятностей и корреляционные функции (т) и (-р)]. К такой модели сводится задача о колебании стержневой конструкции при горизонтальной и вертикальной сейсмических движениях основания, если принять гипотезу о стационарности сейсмического воздействия под действием следящей силы. В частности, это может быть колонна каркаса одноэтажного сооружения.  [c.231]

На рис. 45 показан дискретный спектр функции, имеющий в своем составе конечное число гармоник с частотами (о , 2. > (Одг- Такой спектр характерен для собственных колебаний упругих конструкций. В большинстве практических задач (пульсации, акустические колебания, вынужденные колебания конструкций) спектр имеет непрерывный характер, иногда с дискретными выбросами. Естественно, что для случайной функции спектральное представление не дает зависимости между амплитудой  [c.176]

Сборник посвящен моделированию и исследованиям собственных и вынужденных колебаний элементов конструкций реакторов и турбогенераторов. Рассматриваются динамические деформации и напряжения в системах типа оболочек, пластин, труб, стержней и роторов.  [c.151]

Сообщение вынужденных колебаний элементам конструкций и машин, работающих в условиях вибрационных нагрузок, позволяет  [c.245]

Численные методы широко используются при расчетах собственных частот и форм колебаний элементов конструкций, напряжений при установившихся вынужденных колебаниях, при исследованиях границ динамической устойчивости и при решении ряда других сложных проблем динамики. Многие из таких методов, относящихся главным образом к стационарным динамическим процессам, широко освещены в технической литературе [2 и др.].  [c.490]


ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ, колебания, возникающие в к.-л. системе под действием периодич. внеш. силы (напр., колебания мембраны телефона под действием перем. магн. поля, колебания механич. конструкции под действием перем. нагрузки). Хар-р В. к. определяется как внеш. силой, так и св-вами самой системы. Б начале действия периодич. внеш. силы хар-р  [c.96]

В известных условиях, когда частота возмущающих сил близка или совпадает с частотой собственных колебаний рассматриваемой системы, вынужденные колебания сопровождаются значительным (часто опасным) увеличением амплитуд, вызывающим недопустимые для конструкции деформации. Это явление, как известно, носит название резонанса.  [c.529]

Кроме того, при с<Срез/2 выход на рабочий скоростной режим (Оме во время пуска агрегата неизбежно будет связан с проходом зоны резонанса, так как при с<Срс,/2 средняя угловая скорость Ыч, рабочей машины больше частоты р собственных колебаний агрегата (зарезонансный режим). Проход зоны резонанса сопровождается хоть кратковременными, но значительными динамическими перегрузками. Особенно опасен в этом отношении процесс выбега, когда после выключения двигателя машинный агрегат, будучи предоставленным самому себе, теряет скорость под действием небольших сопротивлений (трение в кинематических парах и т. п.). Здесь обратный проход зоны резонанса может оказаться достаточно длительным, вследствие чего амплитуды вынужденных колебаний успеют возрасти до недопустимого предела. В то же время для конструкции, обладающей большей жесткостью (С>С К,), средняя угловая скорость о) , рабочей машины меньше частоты собственных колебаний р агрегата (дорезонансный режим), так что проход зоны резонанса. (как прямой, так и обратный) попросту отсутствует.  [c.266]

Как видно из (143), для изменения амплитуды свободных колебаний достаточно изменить начальное отклонение или начальную скорость. Напротив, для изменения амплитуды вынужденных колебаний надо изменить возмущающую силу, что обычно бывает сопряжено с необходимостью преобразования конструкции.  [c.282]

Вынужденные колебания происходят с частотой р, равной частоте возмущающей силы. Они не зависят от начальных данных. Для изменения амплитуды вынужденных колебаний надо изменить возмущающую силу, что обычно бывает сопряжено с необходимостью преобразования конструкции. Напомним, что для изменения амплитуды свободных колебаний достаточно изменить начальное отклонение или начальную скорость.  [c.279]

Имеем колебание с частотой ш и линейно возрастающей по времени амплитудой. Это явление называется частотным резонансом. Оно проявляется в неограниченной раскачке вынужденных колебаний при сколь угодно малой амплитуде Ь внешней силы и может привести к разрушению механической конструкции.  [c.235]

Свободные колебания не представляют опасности для прочности конструкции, так как всегда существуют силы внешних и внутренних сопротивлений, под действием которых эти колебания сравнительно быстро затухают. Вместе с тем умение определять частоты свободных колебаний необходимо для расчета на вынужденные колебания.  [c.340]

Любая конструкция является системой с бесконечно большим числом степеней свободы, так как силы ее веса распределены по ее объему. Однако приближенный расчет конструкции даже в том случае, когда нельзя пренебречь ее весом, можно выполнить как расчет системы с одной степенью свободы. Для этого вес Q конструкции заменяют весом Q, сосредоточенным в некоторой точке. При вынужденных колебаниях эта точка принимается совпадающей с местом приложения возмущающей нагрузки.  [c.534]

Увеличение веса машины за счет присоединения дополнительной плиты к основанию приведет к увеличению инерционного сопротивления системы, уменьшит амплитуду ее колебания при той же вынуждающей частоте. Одновременно с этим тяжелая плита, жестко связанная с машиной, приблизит геометрический центр тяжести системы к плоскости несущей конструкции, что, создавая более устойчивое равновесие, также будет способствовать уменьшению амплитуд вынужденных колебаний. Однако чрезмерное увеличение веса механизма повлечет к изменению жесткости прокладок, что, нарушая их оптимальные упругие свойства, может  [c.107]


Резонанс часто представляет собой грозное явление. Рассматривая формулу (17.128), обнаруживаем, что возникновение больших перемещений, а следовательно, и больших усилий и напряжений ), может происходить при резонансе не за счет величины сил (силы могут быть малыми), а за счет сближения частоты вынужденных колебаний (или, что то же самое, частоты вынуждающей силы) и собственной частоты системы. Малая сила способна вызвать разрушение мощной конструкции при неудачной для конструкции комбинации частот со и со с (при близости этих частот), влекущей за собой резонанс. Это явление обнаруживается тем отчетливее, чем меньше сопротивление среды.  [c.113]

Свободные колебания вызываются не только начальным отклонением системы от положения равновесия, но и изменением режима возбуждения, приводящего к вынужденным колебаниям. Поэтому, в частности, в процессе пуска и останова машины возникают свободные колебания самой машины и конструкции, на которой она установлена, накладывающиеся на вынужденные колебания.  [c.219]

Функция Грина, импульсная переходная функция. Машинные, фундаментные и присоединенные конструкции представляют собой с точки зрения акустического расчета сложные механические структуры. Их вынужденные колебания удобно описывать с помощью функций Грина. Если в точке в момент времени приложить мгновенную сосредоточенную внешнюю силу единичной интенсивности б(Х — X i)6(f — i[), то отклик структуры во второй точке с координатой в момент времени называется ее нестационарной функцией Грина < (Хг, ЩХ[, t ). При t2 С функция Грина равна нулю, так как отклик не может появиться раньше возмущающей силы. Важно то обстоятельство, что внеш-  [c.96]

В предыдущих двух главах рассматривались волны и колебания конструкций, состоящих из распределенных масс и податливостей (жесткостей), без учета демпфирования — важного параметра, характеризующего затухание волн и колебаний. Этот параметр обусловлен внутренним и внешним трением, излучением и другими причинами, вызывающими убывание акустической энергии в рассматриваемой конструкции. Во многих случаях эффекты потерь пренебрежимо малы, по в некоторых случаях пренебрежение ими ведет к большим ошибкам в расчетах. Так, амплитуда вынужденных колебаний на резонансной частоте существенно зависит от потерь (см. рис. 3.14). Так же сильно зависят от потерь и отклики произвольной колебательной системы на кратковременные нагрузки. Вследствие демпфирования часть энергии колеблющейся конструкции превращается в тепло и предоставленные самим себе колебания затухают со временем. Аналогичная картина наблюдается и при распространении волны в среде. Из-за внутренних потерь часть энергии волны идет на нагревание среды и амплитуда волнового движения уменьшается с расстоянием по мере распространения волны.  [c.207]

Колебания станин станов. Одна из особенностей конструкций станов состоит в том, что приводной механизм и волочимое изделие взаимодействуют через станину стана, воспринимающую рабочую нагрузку. При определенных условиях колебания станины стана могут приводить к обрыву изделия. Станину цепного волочильного стана представили в виде балки с упругими опорами, нагруженной переменной во времени силой. Составление расчетной схемы провели в два этапа. На первом этапе определили собственные частоты колебаний балок рабочего стола. На втором этапе рассмотрели вынужденные колебания. Для определения частот собственных колебаний использовали уравнение  [c.133]

Большое число диссипативных факторов, сложность и многообразие процессов, сопровождающих колебательные явления, приводят к тому, что при решении инженерных задач приходится прибегать к параметрам диссипации, полученным из эксперимента. В одних случаях экспериментом выявляются коэффициенты рассеяния отдельных элементов конструкции или сочленений, в других — некоторые приведенные значения, свойственные целому механизму, узлу и т. д. Параметры диссипации обычно определяются при моногармонических (т. е. одночастотных) колебаниях в режиме затухающих свободных колебаний либо в резонансном режиме при вынужденных колебаниях В первом случае мы имеем затухающий процесс (рис. 13), для которого коэффициент рассеяния может быть определен как  [c.39]

Вторая глава посвящена теоретическому и экспериментальному определению частотного диапазона применимости предлагаемых методов расчета элементов машиностроительных конструкций, в частности стержней и амортизаторов. Приводится необходимая для расчета вынужденных колебаний конструкций экспериментальная информация о демпфирующих свойствах балок с антивибрационными покрытиями, о потерях энергии при колебаниях в разъемных соединениях и амортизаторах. Анализируются результаты экспериментальных исследований жесткости амортизаторов в области частот 0,01—10 Гц и различной асимметрии цикла нагружения. Делается попытка оценить предельную виброизоляцию резинометаллических амортизаторов.  [c.5]

В самом общем случае, когда нарушения осевой симметрии имеют место (точнее говоря, учитываются исследователем) как в конструкции самого ротора, так и в упругих свойствах его опор, изложенная выше элементарная теория о нахождении частного решения, соответствующего чисто вынужденным колебаниям от небаланса в виде суммы по собственным формам вообще неприменима, поскольку общая задача сводится к системе дифференциальных уравнений с переменными (периодическими) коэффициентами.  [c.127]

Следует отметить, что под действием гидродинамических возмущающих сил, охватывающих широкую область частотного спектра, вследствие резонансов могут резко проявляться почти любые собственные частоты конструкции. В связи с этим необходим тщательный анализ динамических свойств конструкции насосов и принятие соответствующих мер по отстройке частот собственных и вынужденных колебаний во всем диапазоне, обусловленном требованиями по ограничению вибрации. На современном этапе борьбы с вибрацией насосов решение задачи частотной отстройки наиболее успешно может осуществляться экспериментальным путем. Методы и средства такой отстройки подробно рассматриваются в X гл.  [c.180]


К этому разделу относятся теоретическое определение частот собственных колебаний и амплитуд вынужденных колебаний и разработка методов их расчета, часто являющегося основанием расчета на динамическую (усталостную) прочность, экспериментальное определение колебаний на работающих объектах, измерения, связанные с подсчетом сил демпфирования теория мощных вибраторов для искусственного возбуждения и воспроизведения колебательных процессов и для испытания конструкций теоретические исследования, связанные с расчетом оптимальных колебательных процессов для машин, создающих вибрационный режим, необходимый для данного технологического процесса  [c.5]

Вынужденные колебания. В этом случае предполагается, что вынужденные колебания элементов конструкции возбуждаются силами, приложенными к одной или нескольким точкам этой конструкции. Рассмотрим систему с одной степенью свободы (рис. 1.18) при действии силы Рехр(Ш), приложенной к сосредоточенной массе. Уравнение движения относительно перемен щения имеет вид  [c.46]

Цель настоящей работы — дать метод определения внутреннего и внешнего трения из анализа вынужденных колебаний стержневой конструкции Б резонансном или околорезонансном режиме, а также экспериментально показать, что потери от внешнего аэродинамического рассеяния энергии в некоторых стержневых конструкциях могут иметь достаточно большое значение, соизмеримое с потерями от внутреннего рассеяния энергии.  [c.173]

Представлен метод определения коаффициентов внутреннего и внешнего рассеяния анергии из анализа вынужденных колебаний стержневой конструкции в резонансном или околорезонансном режиме.  [c.222]

Расчеты свободных н вынужденных местных колебаний судовых конструкций выполняют с использованием схем однопролетных и неразрезных балок, плоских и пространственных рам, изогропных и ортотропных пластин, цилиндрических подкрепленных оболочек, ортогональных балочных решеток — перекрытий и некоторых других. Большинство из этих схем обычны для задач динамики сооружений, и соответствующие методы расчета приведены в работах [7, И, 16]. Некоторые особенности, характерные для судовых конструкций, проявляются при определении возмущающих сил, услови л закрепления элементов корпуса на опорах (опорном контуре), числовых характеристик демпфирования, а также при учете взаимодействия конструкций с жидкостью.  [c.449]

Новоторцев В. И. Метод последовательных приближений в применении к исследованию вынужденных колебаний инженерных конструкций. Труды Сейсмологического института. ЛГо 26. 1933.  [c.517]

Предупрежд1нию колебаний — вынужденных, самовозбуждающихся (автоколебаний) и обусловленных переменной жесткостью, которые могут возникнуть во время работы станка и неблагоприятно отразиться на чистоте обработанной поверхности, а также на стойкости инструмента и долговечности некоторых деталей станка уделяется большое внимание. Необходимая виброустойчивость машины достигается различными средствами, в частности увеличением жесткости узлов станка, надлежащей конструкцией передач и других элементов привода, уменьшением свободных длин частей станка, особенно опасных в отношении колебаний, уменьшение зазоров в стыках, динамическим уравновешиванием быстро вращающихся частей и другими мерами. В некоторых быстроходных станках новых конструкций, работающих многолезвийным инструментом (фрезерные, зубофрезерные станки), на шпинделе, реже на оправке, сидит маховик, благодаря чему станок работает более спокойно.  [c.12]

Последнее условие (IX.16) для равножесткой конструкции гироскопа требует равенства диссипативных сил, действующих на ротор в процессе его вынужденных колебаний в направлении осей г/ и 2. Диссипативные силы, действующие на ротор при его движении относительно кожуха, характеризуются коэффициентами Пу и величина которых в основном определяется силами внутреннего трения в материале упругих элементов ротора и кожуха. В случае неравенства ку и и, следовате.льно, Ву и В диссипативные силы, действующие на ротор в направлении осей г/ и 2, сдвинуты по фазе на угол Ае = е — е и изменяются с одинаковой частотой V.  [c.246]

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 2.5, в, в 60-х годах был основным средством толщино-метрии. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок труб выпускают иммерсионные резонансные толщиномеры. Некоторыми преимуществами перед таким способом измерения толщины обладает локальный метод свободных колебаний (метод предеф). Главное преимущество заключается в возможности изменения угла падения ультразвука на трубу при сохранении точности измерений. Это упрощает конструкцию протяжного устройства.  [c.102]

Большое значение при создании мощных поршневых и турбомашин имели исследования по колебаниям соответствующих упругих систем. Двигателестроительные заводы были пионерами разработки расчетов коленчатых валов и валопроводов на крутильные колебания. Наряду с применением способа конечных разностей был разработан метод цепных дробей, получивший развитие в научно-исследовательских институтах для расчета вынужденных и нелинейных колебаний, а также проектирования демпферов. Для крутильных, изгибных и связных колебаний успешно разрабатываются методы электромоделирования, позволившие заранее вычислять колебательную напряженность элементов конструкций при сложной структуре как самих упругих схем (например, свойственных вертолетным трансмиссиям), так и сил возбуждения, (например, характерных для многоцилиндровых поршневых машин).  [c.38]

В первой главе рассматриваются общие закономерности колебания упруговязких систем. Выводятся условия, при которых решение может быть разложено в ряды по собственным функциям недемпфированной системы. С помощью методов возмущений анализируется влияние ошибок исходных параметров на точность вычисления собственных частот и векторов. Введение комплексных модулей упругости позволило использовать единую методологию при рассмотрении собственных и вынужденных колебаний, а также систем с сосредоточенными и распределенными параметрами. На конкретных примерах показывается, что эквивалентная масса, которую Е. Скучик полагал постоянной, оказывается зависящей от вида формы колебаний и для каждого из них сохраняет стабильные значения в широком диапазоне частот. Наиболее полными характеристиками виброизолирующих свойств механических структур являются комплексные переходные податливости. Рассмотрена эффективность виброизоляции конкретных конструкций. Приводится решение задачи о распространении продольных колебаний по стержню при наличии сухого трения и даются конкретные примеры приложения этой задачи.  [c.5]

В сложных колебательных системах со многими степенями свободы, какими являются конструкции машин с присоединенными опорными и неопорными связями, в диапазоне частот действия возмущающих сил всегда имеется большое количество частот собственных колебаний. Задачей является исключение возможности совпадения частот вынужденных и собственных колебаний, которые могут проявиться при действии на конструкции данной системы сил. Только в такой постановке могут быть получены определенные положительные результаты. Поэтому при исследовании резонансных характеристик конструкций машин необходимо иметь четкое представление о системе действующих в машине вибрационных сил и онределять реакцию конструкций именно по отношению к такой (или близкой к ней) системе сил. 424  [c.424]


Отсутствие методики подбора амортизации, учитывающей упругость промежуточных конструкций и фундаментов, т. е. отсутствие инженерной методики расчета этих конструкций на вынужденные колебания и ударостойкость.  [c.453]


Смотреть страницы где упоминается термин Колебания вынужденные конструкций : [c.534]    [c.3]    [c.378]    [c.75]    [c.313]    [c.17]    [c.53]    [c.151]    [c.206]    [c.453]   
Краткий курс сопротивления материалов Издание 2 (1977) -- [ c.440 ]



ПОИСК



Колебания вынужденные

Колебания конструкции



© 2025 Mash-xxl.info Реклама на сайте