Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бернулли — Эйлера теория изгиба

Зависимость (2.162) в элементарной теории изгиба известна как закон Эйлера — Бернулли.  [c.72]

Теорией изгиба балок занимались такие крупные ученые, как Мариотт, Яков и Иоганн Бернулли, Лейбниц, Эйлер, Лагранж и др. В разных странах создавались научные общества, которые впоследствии оформлялись в Академии наук. Организация их, издание научных трудов оказали большое влияние на развитие науки. В становлении науки о сопротивлении материалов и теории упругости заметную роль сыграло образование во Франции в 1795 г. Политехнической школы, созданной в духе прогрессивных веяний, связанных с Французской революцией. Инженерное образование в ней было поставлено на высоком уровне особую роль играли вопросы математики и механики. Первый систематический курс по сопротивлению материалов был выпущен профессором этой школы Навье в 1826 г.  [c.6]


Гипотезы 1—3 являются непосредственным обобщением гипотез Бернулли — Эйлера, используемых в теории изгиба балок. Они устанавливают отсутствие деформаций сдвига по толщине пластины и линейной деформации в направлении, перпендикулярном срединной плоскости.  [c.176]

Теорией изгиба тонких упругих стержней занимались такие выдающиеся ученые, как Э. Мариотт, Я. Бернулли-старший, Ш. О. Кулон, Л. Эйлер, причем становление теории упругости как науки южно связать с работами Р, Гука, Т. Юнга, Ж. Л- Лагранжа, С. Жермен.  [c.5]

В начале своей научной деятельности в университетском колледже Пирсон опубликовал несколько собственных научных работ по теории упругости, из числа которых особый интерес для специалистов представляет его исследование Об изгибе тяжелых балок под действием систем сплошных нагрузок ). В этой работе Пирсон обобщает теорию изгиба балок на случаи действия объемных сил, к которым, в частности и в первую очередь, относится сила тяжести. Из полного решения задачи для круглого и эллиптического поперечных сечений Пирсон заключает, что теорию Бернулли—Эйлера нельзя признать строгой для балок, находящихся под действием сплошных нагрузок, хотя, с другой стороны, результаты ее и близко сходятСя с получаемыми средствами точной теории . Некоторые из работ Пирсона представляют интерес для инженеров. Он исследовал изгиб неразрезных балок на упругих опорах ) и показал, что в такой постановке задача приводит к уравнениям, в которые входят значения моментов на пяти последовательных опорах. Он исследовал также важную для практики задачу о напряжениях в каменных плотинах ).  [c.410]

Здесь же содержится и теория изгиба кривого бруса, построенная на гипотезе Я. Бернулли — Эйлера о пропорциональности изгибающего момента приращению кривизны стержня. 63  [c.63]

Потенциальная энергия внутренних сил балки по теории изгиба стержней Бернулли-Эйлера имеет вид следующего функционала  [c.164]

Это выражение соответствует уравнению упругой линии, которое устанавливается в элементарной теории изгиба балок (и иногда называется законом Бернулли — Эйлера о пропорциональности между кривизной и изгибающим моментом).  [c.151]

Основоположником современного учения о твердости тел явился великий русский ученый Михаил Васильевич Ломоносов (1711 —1765 гг.). Весьма важные теоретические исследования об изгибе балок и сжатых стоек были проведены профессором Петербургской Академии наук Леонардом Эйлером (1707—1783 гг.). Начало теории изгиба пластин было положено в трудах профессора Академии Якоба Бернулли младшего (1759—1789 гг.). Большое влияние на развитие в России науки о прочности оказала деятельность за-  [c.5]


Классическая теория изгиба балки Бернулли-Эйлера является простейшим следствием теории Кирхгофа. Вместо (2.9) будем иметь  [c.243]

Гипотеза плоских сечеиий и принцип Сен-Венана. Ставя своей задачей определение только нормальных напряжений изгиба, в основу теории достаточно положить гипотезу о том, что плоские до деформации поперечные сечения балки остаются после деформации плоскими и перпендикулярными деформированной оси. Теория изгиба, построенная на гипотезе плоских сеченнй, была в основном завершена уже Л. Эйлером и носит название теории Бернулли — Эйлера или тех-  [c.221]

Затем он приступил к изучению тем же путем стеклянной балки, опертой на концах и нагруженной в середине пролета. В этом случае условия передачи нагрузки были более точно известны. Сравнивая опытные данные с теорией, он предположил, что местное влияние груза было таким же, как и для балки, лежащей на плоском основании, далее он наложил на это решение обычное распределение напряжений для изгиба Эйлера— Бернулли, вызванное изгибающим моментом, приложенным в сечении непосредственно под грузом.  [c.382]

Эйлера как математика интересовала прежде всего геометрическая форма упругих линий изгиба. Без серьезного обсуждения он принял теорию Якова Бернулли, утверждавшую, что кривизна изогнутой оси балки в каждой ее точке пропорциональна изгибающему моменту в этой же точке. Основываясь на этом допущении, он исследовал форму кривых, которые принимает тонкий гибкий упругий стержень при различных условиях его загружения. С главными результатами работы Эйлера в зтой области можно  [c.43]

Исторически создание основ науки о прочности — сопротивления материалов в семнадцатом и восемнадцатом веках может быть отмечено обнародованием закона Гука (1660 г.), уравнения изогнутого бруска (Яков Бернулли в 1705 г.), теории продольного изгиба стержня (Эйлер, 1744 г.), теории сдвига и кручения валов (Кулон, 1776—1787 г.), определения видов деформации и понятия о модуле упругости (Юнг, начало XIX в.).  [c.13]

Примечание. Если мы подставим равенство (5) и результат его дифференцирования по 2 в (3), то согласно теории Бернулли-Эйлера получим функционал потенциальной энергии внутренних упругих сил при изгибе стержня  [c.172]

Первые результаты были получены, когда в уравнения ввели поправки, которые позволили более полно учесть основные факторы, определяющие распространение упругой волны (Релей [97], Тимошенко [99]). На этом пути существенный вклад сделал С. П. Тимошенко, предложивший (вне связи с исследованиями по распространению волн) уточненное уравнение динамического изгиба (и сдвига) стержня. Как потом было установлено Я. С. Уфляндом [104] и другими, уравнение Тимошенко в отличие от уравнения Бернулли— Эйлера определяет конечные скорости распространения волн и дает результаты, во многих отношениях удивительно близкие к точным результатам, вытекающим из теории упругости. Уравнения Тимошенко и их решения исследовались в ряде работ, в частности, в [73 78 104 120—122 129 142 143].  [c.11]

Однако здесь дело в том, что уравнение Бернулли—Эйлера лишь приближенно описывает изгиб упругого стержня и для больших значений q (для коротких волн) непригодно (подробнее см. 35). Если же оставаться в рамках этой приближенной теории, то противоречие снимается, так как указанное уравнение не определяет какой-либо максимальной скорости распространения возмущений. Возмущение по такой системе, хотя и ослабевая по мере удаления от источника, мгновенно распространяется по всей области, в которой система определена.  [c.152]

Стремление расширить область применимости уравнений динамики элементов конструкций привело к формулировке уточненных теорий, отличающихся меньшим числом допущений или большим числом степеней свободы при описании зависимости перемещений от координат, лежащих в том сечении тела, размер которого мал. Среди уточненных уравнений хорошо известны уравнения С. П. Тимошенко [99], описывающие динамический изгиб стержня. В них по существу исключены наиболее существенные допущения, положенные в основу уравнения Бернулли—Эйлера, а именно учтены (приближенно) продольные инерционные силы и податливость на сдвиг. Уравнения аналогичной степени точности выведены также применительно к динамическим деформациям пластин [104] и оболочек [132.  [c.222]


Балки на упругих опорах 251 (пр. 8), 252 (пр. 9),— на упругом основании 284—289, — немного искривленные 228, — неразрез-иые 96, 235, 252 (пр. 8—10), 659, — первоначально искривленные 64, 72, — прямые 60, 64, 208—225, 410, см. прогиб вследствие перерезывающей силы, — таврового сечения 295,— узкие прямоугольные 294, 438, 495—499, на балку влияние движущейся и пульсирующей нагрузки 651—655, балок кривизна 61 Беггса деформометр 43 Безопасности коэффициент 189, 190, 299 Безразмерные уравнения 237, 266 Бернулли — Эйлера теория изгиба бЗпп Бесселя уравнение 317 Бетон 223, 659 Боу обозначение 139 Бронза 341 Брус круговой 513 Буферная пружина 324 (пр. 6)  [c.664]

Ставя своей задачей только определение нормальных напряжений изгиба, в основу теории достаточно положить предполо-жевие о том, что плоские до деформации поперечные сечения балки остаются носле деформации плоскими и ортогональными к изогнутой оси. Теория изгиба, следующая из этого иредноло-жения, носит название технической теории или теории Бернулли — Эйлера. Точная теория изгиба, ностроенная Сеи-Венаном для случая, когда балка загружена сосредоточенными силами, а также немногочисленные (чрезвычайно громоздкие) решения задач об изгибе распределенной нагрузкой убеждают нас в том, что хотя закон плоских сечений и не соблюдается, полученные на основе его выводы оказываются весьма точными (если, конечно, h/l<. 1).  [c.78]

Дальнейшего прогресса в этой области достиг Лэмб ), который рассмотрел бесконечную балку, нагруженную через равные промежутки равными сосредоточенными силами, действующими попеременно вверх и вниз, и получил для нескольких случаев выражения кривой прогибов. Полученные результаты показывают, что элементарная теория изгиба Бернулли—Эйлера является весьма точной, если высота балки мала по сравнению с длиной. Было также показано, что уточнения для поперечной силы, даваемые элементарной теорией Ренкина и Грасхофа (см. стр. 67), являются несколько завышенными и должны быть уменьшены примерно на 25% = ).  [c.130]

В целом можно сказать, что книга Л. Г. Доннелла представляет интерес своим отбором. задач для обсуждения, характером обсуждения решений задач, общим взглядом на проблему расчета упругих стержней, пластин и оболочек. -Разумеется, представленный материал не в состоянии охватить всю проблему. Редактор считает необходимым предъявить автору претензии в. сшлсле ссылок на литературные источники и во многих других отношениях. В частности, невозможно, например, согласиться - с попыткой автора называть совокупность гипотез теории изгиба прямых, стержней Бернулли — Эйлера гипотезой Кирхгофа — Лява, невозможно принять такое же утверждение в теории пластин. Такие вольности могут иметь очень грустные последствия. Преследуемая автором краткость выражения достигает иные, печальные цели. Поэтому в ряде случаев редактор вынужден был вносить в текст неизбежные коррективы.  [c.6]

Формулы (16) и (17) основаны на тех предположениях об изгибе, которые сделали Яков Бернулли (1705), Даниил Бернулли и Эйлер (1742 1744) в задаче об эластике (ср. гл. XIII), Основанная на этих предположениях приближенная теория (обычно известная как теория Бернулли-Эйлера ) широко используется в технике. Область применения этой теории и степень ее  [c.63]

Изучается качение жёсткого колеса по деформируемому упругому рельсу, лежащему на вязкоупругом основании. Ранее [20, 115] при составлении модели системы использовалась приближённая теория Бернулли-Эйлера. Здесь применяется уточнённая теория изгиба стержней (С. П. Тимошенко). С помощью принципа Гамильтона-Остроградского составлены уравнения движения. Показано, что связи, описывающие условия контакта, создают реакции в виде силы и пары. Дана оценка величины псевдоскольжения, обусловленного поперечными (в отличие от классического крипа) деформациями. Найдены две характерные скорости стационарного качения колеса, разделяющие области качественно различного движения рельса.  [c.146]

Таким путем было доказано, что элементарная теория Бернулли— Эйлера об изгибе балок достаточно точна, если высота балки мала по сравнению с ее длиной. Кроме того Ламбом было установлено также, это поправка на перерезывающую силу, получающаяся по элементарной теории Ренкина н Грасгофа (см. выше стр. 53), несколько преувелипет, и ее следует уменьшить примерно до 0,75 ее величины 2).  [c.113]

Дан стержень призматического сечения (рис. 42), и к основаниям его приложены равные, но противоположные пары сил. Ось г направим по оси стержня плоскость хг совпадает с плоскостью действия приложенных пар. Случай этот носит название чистого изгиба элементарная теория его разработана в XVIII веке Я. Бернулли и Эйлером она основана на гипотезе, предполагающей, что ось стержня ОВ изогнется по кривой, лежащей в плоскости хг, и что плоские поперечные сечения стержня останутся плоскими и нормальными к изогнувшейся оси. Из простых геометрических соображений (излагаемых в курсах сопротивления материалов) можно заключить, что  [c.116]

Обобщение теории изгиба балки. В предыдущих глайах мы изучили некоторые строгие решения задачи об изгибе балки для специальных видов нагрузки. В случае балки, изгибаемой сосредоточенной силой, приложенной на конце, мы убедились в справедливости теории Бернулли-ЭЙлера  [c.383]

Прн математическом описании поведения модели часто приходится вводить дополнительные упрощающие предположения о характере отдельных свойств модели и ее материала. Этим объясняется, в частности, существование для одной и той же физической модели нескольких различных математических моделей. Так, например, если задачей расчета балки из изотропного материала на изгиб является определение лишь нормальных напряжений, в основу математической теории изгиба достаточно положить гипотезу плоских сечений, по которой плоские до де< рмацни поперечные сечения балки остаются и после деформации плоскими и ортогональными к изогнутой оси (техническая теория, или теория Бернулли— Эйлера). Однако точная теория, построенная Сен-Венаном для изгиба балки сосредоточенными силами, показывает, что, хотя гипотеза плоских сечений и не соблюдается, полученные на ее основе результаты весьма точны для балок, длина которых гораздо больше размеров ее сечения. В то же время, как известно из технической теории изгиба, введение гипотезы плоских сечений позволило описывать деформированное состояние балки при помощи небольшого числа параметров.  [c.13]


Большое внимание уделялось на протяжении всего XIX в. теории пластинок, а в конце века и теории оболочек. Первые исследования изгиба и колебания пластинок были предприняты еще в XVIII в. Л. Эйлером и Я. Бернулли (младшим).  [c.58]

Теория упругости сформировалась, как один из важных разделов математической физики в первой половине XIX века. До этого времени трудами ученых XVII и XVIII веков — Галилея, Мариотта, Гука, Бернулли, Эйлера, Кулона и других—была довольно детально разработана тбория изгиба тонких упругих стержней. В начале XIX века Лагранжам и Софи Жермен было дано решение задачи об изгибе и колебаниях тонких упругих пластинок. Некоторые особенности таких тонких упругих тел позволили значительно упростить постановку и самое решение задач о деформировани под действием внешних сил, не вникая особенно глубоко в существо явлений, происходящих в материале. Начало XIX века ознаменовалось огромными успехами математического анализа, обусловленными отчасти множеством важных задач, возникших в физике, потребовавших применения сложного математического аппарата и дальнейшего развития его это и послужило основой для возникновения особого направления в физике, названного математической физикой. Среди множества проблем, вставших перед этой молодой дисциплиной, необходимо отметить потребность в глубоком исследовании свойств упругих материалов и в построении математической теории, позволяющей возможно полно изучать внутренние силы, возникающие в упругом теле под действием внешних сил, а также деформацию тела, т. е. изменение формы его. Этого рода исследования оказались крайне необходимыми также для удовлетворения запросов быстро развивавшейся техники в связи со строительством железных дорог и. машиностроением запросы эти вызывались необходимостью создать теоретические методы расчета частей сооружений и машин на прочность. Уже в 1825 г. крупный французский инженер и ученый Навье выпустил, Курс лекций по сопротивлению материалов , основанный на имевшихся к тому времени экспериментальных данных и приближенных теориях, указанных нами выше. В России аналогичный курс  [c.9]

До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]

Ба. .ки кривизна—, 141, 151, 354, 377, 386 прогиб—, 356 кручение при изгибе—, 356 напряжение при поперечных нагрузках—, 150, 346, 362, 375 касательное напряжение в —, 34, 1 0, 346, 362 иссяедование смещения в —, 150, 349, 359 искажение поперечного сечения в —, 151, 357 удлинение упругой линии —, 379 — из анизотропного материала, 360 сложная деформация в —, 360 приближенная теория —, 386—391 см. Неразрезная балка Изгиб балки Изгибающий момент Теория Бернулли-Эйлера Нейтральная плоскость.  [c.667]

Основы теории волн в упругом цилиндрическом стержне были созданы Похгаммером и Кри еще в конце прошлого века. Было установлено наличие различных форм собственных волн. В дальнейшем исследования по распространению нестационарных волн в элементах упругих конструкций проводились, как правило, на основе приближенных уравнений, которые получали из соответствующих уравнений статики. Добавление к этим уравнениям инерционных членов позволило построить решения задач о распространении волн, однако некоторые выводы при этом оказались в противоречии с результатами теории упругости. Так, скорость распространения возмущений при динамическом изгибе стержня, определенная по уравнению Бернулли — Эйлера, не имеет верхнего предела, в то время как по теории упругости она должна быть ограничена скоростью продольных волн в сплошной среде. Упомянутое уравнение вообще не позволяет установить наличия фронтов волн. Скорость продольной волны, определяемая приближенным уравнением продольных колебаний стержня, хотя и ограничена, но не совпадает с соответствующей скоростью из теории упругости (см. 35).  [c.10]


Смотреть страницы где упоминается термин Бернулли — Эйлера теория изгиба : [c.327]    [c.17]    [c.19]    [c.162]    [c.47]    [c.176]    [c.16]   
Введение в теорию упругости для инженеров и физиков (1948) -- [ c.63 ]



ПОИСК



Бернулли

Теория Бернулли-Эйлера

Теория изгиба

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте