Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатель Разрушение

Рассмотрим эти подходы в расчетах на примере дисков ГТД, являющихся основными элементами конструкции двигателя, разрушение которых в полете недопустимо.  [c.38]

Приведенные результаты оценок длительности процесса роста трещины, общей длительности зарождения и роста трещины, сопоставления оценок нагруженности лопаток в сечении разрушения с уровнем эквивалентного напряжения показывают, что анализируемое разрушение было реализовано в нормальных условиях эксплуатации двигателя. Разрушение лопаток имело характер МЦУ,  [c.587]


Неисправности электрических машин можно подразделить на неисправности электрических и механических частей. К наиболее существенным неисправностям по электрическим и токоведущим частям относятся понижение сопротивления изоляции, пробои, механические разрушения, старение изоляции у токопроводящих проводов — трещины и надломы, износ, перегрев и расплавление контактных соединений по механическим частям трещины валов якорей и подшипниковых щитов, ослабление посадки малого зубчатого колеса на конусной части вала и внутренних колец подшипников на шейках вала якоря тягового двигателя, разрушение сепараторов подшипников, деформация горловин остовов и ослабление подшипниковых щитов в остовах, износ вкладышей и деформация деталей моторно-осевых подшипников, ослабление болтов, крепящих полюсы, щеткодержатели, крышки моторно-осевых подшипников, просадка и поломка пружин подвески тяговых двигателей.  [c.90]

Проверка герметичности соединений впускного тракта от воздушного фильтра к двигателю необходима, так как попадание пыли в двигатель приводит к интенсивному изнашиванию деталей цилиндропоршневой группы, повышенному расходу топлива и падению мощности двигателя. Нарушение герметичности впускного тракта связано с разрушением резиновых патрубков или неплотным их закреплением на воздухопроводах, отсутствием болтов скоб крепления топливных трубок на впускных коллекторах двигателя, разрушением или смещением прокладок впускных коллекторов.  [c.53]

Исследования по огнеупорным материалам приводят Е. Зенгера к двум интересным идеям во-первых, он предложил допускать в процессе работы двигателя разрушение теплозащитного слоя, обновляя его после каждого полета летательного аппарата [243, с. 232] во-вторых, он предложил добавлять в топливо подходящее вещество (немного карбонила железа, асфальта и т.д.), которое при горении выпадает и осаждается на стенке, "...так что происходит регенерация футеровки стенки" [243, с. 232]. Другими словами, ученый предложил метод охлаждения отложением, нашедший (пока ограниченное) практическое применение в настоящее время.  [c.41]

Значительный ущерб ОГ автомобильных двигателей наносят коммунальному хозяйству городов. Повышенная концентрация окислителей в атмосфере приводит к преждевременному разрушению металлических конструкций, бетона, камня. Так, за последние 30. .. 40 лет архитектурные памятники в городах Западной Европы состарились в большей степени, чем за все время до автомобильной эры.  [c.9]


Для эффективной защиты от разрушения цилиндров дизельных двигателей добавляют в охлаждающую воду 2 г/л хромата натрия [18].  [c.117]

Явление ползучести металлов при высокой температуре порядка 500 °С наблюдается в деталях паровых турбин — трубопроводах, дисках, лопатках. Паровые турбины до сих пор производят значительную долю электрической энергии. Другим примером могут служить газотурбинные самолетные двигатели, температура газа в которых достигает 1300°С Основной причиной выхода из строя турбин является ползучесть рабочих лопаток. Высокие рабочие температуры применяются также в различных высокотемпературных технологических процессах, например нефтехимических и при переработке нефти. С проблемой учета ползучести металлических панелей мы встречаемся в системе термической защиты космических аппаратов, атомной энергетике и др. К конструкциям, работающим в условиях высоких температур, должны быть предъявлены следующие требования деформация не должна превышать допустимую в соответствии с выполняемыми конструктивными функциями изделия не должно произойти разрушения конструкции вследствие ползучести.  [c.304]

Явление резонанса может быть причиной разрушения машин, зданий, мостов и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы. Поэтому, например, двигатели в автомобилях устанавливаются на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти в ногу.  [c.220]

К этому классу явлений следует отнести также возникновение динамических реакций, приложенных к валам двигателей различных транспортных средств, несущих на себе маховые колеса, диски турбин и подобные им детали, при поворотах вызывающих изменение направления оси вращения вала. Эти реакции могут быть очень велики и иногда приводят к разрушению деталей машин, к которым они приложены.  [c.444]

Если конструкцию из металлического материала защитить от воздействия агрессивных сред, необходимо длительное время для того, чтобы такая ненагруженная конструкция самопроизвольно разрушилась. Время до разрушения может исчисляться сотнями лет. Создание же любой промышленной конструкции предполагает, что она должна будет нести определенную нагрузку опоры моста испытывают сжатие, трос подъемного крана - растяжение, вал двигателя - кручение. Таким образом, материал конструкций постоянно или периодически подвергается внешним воздействиям. При этом в материал происходит накачка энергии извне, и он вводится в неравновесное состояние. В его структуре начинают происходить постепенные перестройки. Они ведут к усилению границ раздела между отдельными структурными элементами, составляющими материал, и в конечном итоге - к появлению и развитию микротрещин.  [c.100]

Рабочий цикл в газотурбинном двигателе происходит при высокотемпературном тепловом процессе с образованием высокоскоростных выхлопных газов. В процессе работы рабочие лопатки турбины высокого давления подвергаются окислению и газодинамической коррозии, т.е. физическому разрушению.  [c.433]

Наличие вредного пространства т. е. неизменяемой части объема рабочей камеры, обусловлено конструкцией камеры, подвижных частей и распределителя. Так, у поршневого пневмодвигателя (рис. 15.8) поршень в конце выхлопа не доходит вплотную до торцевой стенки цилиндра во избежание удара и разрушения двигателя. Поэтому требуется обеспечить некоторый зазор между поршнем и крышкой цилиндра, который компенсировал бы тем-  [c.261]

Отличительная особенность этих летательных аппаратов состоит в том, что они входят в плотные слои атмосферы с очень большой скоростью, а поэтому испытывают сильное влияние аэродинамического нагрева. С целью предохранения от разрушения, вызванного этим нагревом, поверхность этого аппарата должна быть снабжена теплозащитой. Снижение скорости при спуске обеспечивается при помощи тормозных двигателей и парашютов. Существенные недостатки баллистического спуска связаны со значительными перегрузками летательных аппаратов. Эти перегрузки можно уменьшить, если использовать конструкцию спускаемого летательного аппарата с повышенным аэродинамическим качеством, т. е. с увеличенной подъемной силой. При такой подъемной силе ограничение перегрузок одновременно сопровождается снижением угла входа, т. е. уменьшением захвата атмосферой спускаемого аппарата. Это позволяет значительно снизить тепловые нагрузки, повысить маневренность.  [c.126]


В случае внезапного прекращения подачи электроэнергии к двигателю насоса последний останавливается. При этом ввиду резкого прекращения подачи жидкости давление в начале напорного трубопровода резко падает. Столб жидкости в напорном трубопроводе изменит направление своего движения и с большой скоростью устремится к насосу. При наличии обратного клапана не допускающего движения воды в сторону насоса, через некоторое время происходит резкое повышение давления с возможными аварийными последствиями (разрушение корпуса клапана, ра ыв трубы и т. д.).  [c.113]

В ряде современных машин разрушение деталей может происходить в результате большой температурной и силовой напряженности, в которых они работают. Так, например, в реактивных двигателях самолетов детали, образующие горячий тракт,. — жаровые трубы, кожухи камер сгорания, форсажные камеры и др. — работают в условиях высоких температур, частых изменений теплонапряженности и действия вибрационных нагрузок, вызывающих переменные напряжения. На рис. 20, е показана трещина в стенке кожуха камеры сгорания реактивного двигателя, когда разрушению предшествовал прогар материала, газовая коррозия и абразивный износ стенок, а также накопление усталостных разрушений. Таким образом, разрушение материала, как проявление данного процесса старения, может являться следствием комплекса разнообразных необратимых процессов.  [c.84]

Пример интенсивного локального разрушения поверхности от эрозии показан на рис. 24, д, где на чугунном поршневом кольце двигателя из-за прорывов газа и интенсивного местного нагрева отдельные частицы материала размягчались и уносились потоком газа [187].  [c.95]

Отдельные контрольные испытания на надежность непосредственно в цехах завода-изготовителя могут осуществляться и для более сложных узлов и агрегатов-двигателей, коробок передач и редукторов, гидросистем и др. (см. гл. 11). Следует обратить внимание на необходимость тщательного анализа не только результативности, но и последствий контроля для особо ответственных деталей в случае, когда производится контроль надежности для каждого экземпляра и этот экземпляр поступает в эксплуатацию. Можно привести немало примеров, когда контрольно-испытательные воздействия на изделие ухудшают его характеристики качества. Например, резервуары и емкости (баки), в которых должна помещаться жидкость (например, горючее), испытываются при давлениях, больших, чем рабочее. При этом, чем выше требования к емкости, тем давление при испытании больше превосходит рабочее, чтобы была гарантия его надежной работы при эксплуатации. Однако в этом случае силовые воздействия при контрольном испытании могут настолько повлиять на прочностные характеристики, что сделают изделие менее надежным в работе — будут способствовать более быстрому его разрушению. Другой пример — контроль прецизионных деталей с высокими требованиями к качеству поверхности, например, гидравлического золотника 14-го класса шероховатости. При измерении ножка индикаторного прибора оставляет след даже на закаленной поверхности, что сказывается на эксплуатационных показателях изделия. Здесь допустим лишь бесконтактный метод контроля.  [c.455]

Фреттинг-коррозия наблюдается у валов, резьбовых соединений, подшипников качения, муфт и других деталей, находящихся в подвижном контакте. Значительные скорости и интенсивности изнашивания при малых относительных перемещениях контактирующих поверхностей деталей авиационных двигателей приводят к отбраковке большого количества дорогостоящих изделий [180]. Фреттинг-коррозия является одним из самых опасных процессов разрушения деталей машин и может происходить как в условиях сухого трения, так и при наличии смазки у многих материалов.  [c.106]

При работе, например, деталей газовых турбин, двигателей внутреннего сгорания воздействие термоусталостных напряжений сопровождается газоабразивным изнашиванием, коррозионным разрушением поверхности. Одним из эффективных способов защиты поверхности от воздействия продуктов сгорания является нанесение специальных покрытий. Известно, что усталостные трещины (в том числе и термоусталостные) зарождаются обычно на поверхности изделия. Поэтому важно знать характер влияния покрытия на кинетику термоусталостного разрушения. Защищая основной металл от воздействия среды, т. е. увеличивая тем самым долговечность, покрытие может стеснять пластическую деформацию поверхностных слоев, способствовать возникновению и росту трещин, уменьшать надежность детали.  [c.128]

Из указанных выше узлов или элементов конструкции развитие усталостной трещины в полете до критических размеров в лонжероне лопасти приводит к полному разрушению вертолета. В этом случае предельное состояние определяется критической длиной трещины, которая не должна быть достигнута в процессе эксплуатации. Разрушение диска компрессора или турбины, как правило, приводит к предпосылке летного происшествия. Согласно требованиям к проектированию ВС и силовых установок, возникающие внутренние разрушения элементов конструкции двигателя  [c.27]

Кроме того, в эксплуатации самолета Конкорд , несмотря на то, что двигатели Олимп прошли наиболее разнообразные и жесткие испытания, которым когда-либо подвергался двигатель для гражданских самолетов, наработав более 50 000 ч при различных испытаниях, отмечались следующие дефекты неполадки в системе регулирования воздухозаборника, перегрев двигателей, разрушение соединения корпусов компрессоров и некоторые другие. Однако в целом двигатели СПС Конкорд характеризуются высокой надежностью.  [c.139]


Среди машин, детали которых подвергаются гидроэрозии, следует указать дизельные двигатели. Разрушению подвергается охлаждаемая поверхность гильз и рубашки блока цилиндров [14, 53]. Как показывает практика эксплуатации судовых дизельных двигателей, чугунные гильзы разрушаются со стороны охлаждаемой поверхности значительно раньше, чем со стороны ее внутренней части. Так, сопротивление износу внутренней поверхности чугунной гильзы может обеспечить работу двигателя в течение 10 ООО—14 ООО ч, тогда как со стороны охлаждаемой поверхности гильза подвергается гидроэрозионному износу через 5000—6000 ч. Степень гидроэрозии гильзы зависит от многих факторов свойств материала, температуры, скорости движения охлаждающей жидкости, уровня вибрации гильзы, вида ее термической и механической обработки, стойкости поверхностного покрытия и т. д. В данном случае интенсивность разрушения в основном определяется вибрационной нагрузкой. Известны случаи, когда при одновременном сочетании ряда неблагоприятных факторов обнаруживали сквозное разрушение гильзы через 200—800 ч работы двигателя [78].  [c.20]

При работе двигателя его детали нагреваются в результате контакта с горячими газами и трения. Отвод теплоты от них с м.аслом и рассеянием ее в окружающую среду менее интенсивен, чем подвод, вследствие этого поршни, головки и крышки цилиндров, цилиндры, клапаны, впускные трубопроводы и корпуса турбокомпрессоров могут нагреваться до недоспустимо высокой температуры. Это может привести к нарушению процесса сгорания, снижению мощности и экономичности двигателя, разрушению его деталей.  [c.173]

Наличие такого выреза приводило к образованию концентраторов напряжений и являлось причиной усталостных разрушений. После отмены выреза в крыле и введения соответствующей подштамповки в щите двигателя разрушения в зоне крыла исключены.  [c.348]

При действии переменных нагрузок (например, в поршневых двигателях) поверхность вкладыша может выкрашиваться вследствие З сталости, Усталостное выкрашивание свойственно подшипникам с малым износом н наблюдается сравнительно редко. В случае действия больших кратковременных перегрузок ударного характера вкладыши иодшипииков могут хрупко разрушаться. Хрупкому разрушению подвержены малопрочные антифрикционные материалы, такие, как баббиты и некоторые пластмассы.  [c.274]

Не менее опасное разрушение металла ю кет иметь место при одноиремеином воздействии на него агрессивной среды и переменных напряжений. Этот вид разрушения известен под шзва-пием коррозионной усталости. Коррозионной усталости подвержены штоки компрессоров и насосов, роторы, диски и лопачки турбин, пароперегреватели, шатуны двигателей и т. и.  [c.101]

Хорошо известно, что под действием потока газа, скорость которого превышает некоторую критическую, капля жидкости или струя разрушается. Это явление приводит к нелинейным колебаниям процесса горения в ракетных двигателях. Лейн [457] и Волынский [854] экспериментально определяли критические условия разрушения. Моррелл [555] исследовал струю воды под действием поперечных ударных волн. Наблюдались два основных типа процесса дробления жидкости. При одном из них возмущение капель заканчивается образованием нерегулярных струек. При втором происходит сдувание жидкости в форме пузырьков. Капля может принять линзообразную форму, и жидкость срывается с ее внешнего края. Обобщенная модель обоих типов процессов дробления пред.чожена Морре.т.чом [555].  [c.146]

В момент наибольшего сокращения расхода система скачков превратцается в криволинейную ударную волну, выбитую вперед за пределы центрального тела. Это приводит к устранению отрыва пограничного слоя и увеличению расхода воздуха, вследствие чего система скачков восстанавливается, а замыкающий ее скачок подходит к тому месту, где вновь происходит отрыв пограничного слоя и т. д. На этом режиме наблюдается сильная тряска ( ном-паж ) двигателя — низкочастотные пульсации давления, связанные с колебанием расхода воздуха. Ввиду возможного разрушения двигателя работать на режиме помнажа нельзя.  [c.486]

Тугоплавкие, оплавляющиеся, сублимирующие и газифицирующиеся покрытия находят щирокое применение в ракетной технике для защиты наружных поверхностей ракет от разрушения при входе их в плотные слои атмосферы. Эти покрытия применяются также для защиты внутренних поверхностей ракетного двигателя твердого топлива. Чтобы критическая часть сопла не изменяла своих размеров во время работы двигателя, ее выполняют из тугоплавкого материала, а остальные поверхности покрывают оплавляющимися, сублимируюш,ими или газифицирующимися покрытиями.  [c.474]

Электродвигатель постоянного тока типа ПБСТ-22 питается от сети 220 В через стабилизатор напряжения (9) и выпрямительный, мост. Число оборотов двигателя регулируется ЛАТРом (10). Количество циклов отсчитывается счетчиком циклов (11). Образец после разрушения под действием груза (6) падает на микровыключатель (12) и отключает электродвигатель.  [c.63]

Пример 8.1. Проводится определение запаса прочности и вероятности разрушения для определенной детали парка находящихся в эксплуатации однотипных стационарно нагруженных изделий применительно к многоопорному коленчатому валу однорядного четырехцилиндрового двигателя, поставленного как привод стационарно нагруженных насосных, компрессорных и технологических агрегатов. Основным расчетным случаем проверки прочности для этой детали является циклический изтиб колена под действием оил шатунно-лоршневой группы. Эти силы при постоянной мощности и числе оборотов двигателя находятся на одном уровне с незначительными отклонениями, связанными глайным образом с отступлениями в регулировке подачи топлива и компрессии в цилиндрах. Причиной существенных отклонений изгибных усилий является несоосность опор в пределах допуска на размеры вкладышей коренных подшипников и опорные шейки вала, возникающая при сборке двигателя, а также несоосность, накапливающаяся в процессе службы от неравномерного износа в местах опоры вала на коренные подшипники. Соответствующие расчеты допусков и непосредственные измерения на двигателях позволили получить функции плотности распределения несоосности опор и функцию распределения размаха  [c.175]

Соединение труб между собой осуществляется с помощью тройников или сваркой. Присоединительная арматура (гайки, штуцеры, ниппели, угольники, тройники и т. д.) унифицирована. Весьма важным моментом в изготовлении трубопроводовявляется гибка труб. Она производится на специальных гибочных станках или станках-автоматах. Опыт эксплуатации гидрофицированных машин показывает, что разрушение трубопроводов происходит в местах их наибольшей кривизны и вблизи ниппелей. Это объясняется тем, что во время гибки труб в металле возникают микротрещины, которые развиваются под действием пульсаций давления жидкости и вибраций, вызванных двигателем и колебаниями металлоконструкции. Вблизи ниппелей трубы разрушаются в связи с изменением структуры металла в период сварки.  [c.259]


Наиболее распространены испытания на изгиб при симметричном цикле напряжений. На рис. 1.5 показана схема машины для испытания образцов при чистом изгибе. Образец 3 зажат во вращающихся цангах 2 и 4. Усилие передается от груза, подвешенного на сергах 1 т 8. Счетчик 5 фиксирует число оборотов образца. Когда образец ломается, происходит автоматическое отключение двигателя 6 от контакта 7. Испытания проводят в такой последовательности. Первый образец нагружают до значительного напряжения Oj (амплитуда напряжений первого образца Стд = а а, = (0,5...0,6) ст ), чтобы он разрушился при сравнительно небольшом числе циклов N . Второй образец испытывают при меньшем напряжении а2, разрушение произойдет при большем числе циклов N2. Затем испытывают следующие образцы с постепенно уменьшающимся напряжением они разрушаются при большем числе циклов. Для большей достоверности результатов на каждом уровне нагружения испытывают несколько образцов, поскольку неизбежен большой разброс в предельных значениях N. По результатам испытания строят график, где по оси абсцисс откладывают число циклов N, которые выдержали образцы до разрушения, а по оси ординат — соответствующие значения максимальных напряжений испытываемых образцов. Такой график (рис. 1.6) называют кривой усталости.  [c.17]

Детонация сопровождается неустойчивой работой двигателя, потерей мощности, приводит к разрушению деталей двигателя. Для каждого дистиллятного топлива существует определенная степень сжатия, при которой возникает детонация. Чем выше октановое чиело, тем меньше склонность топлива к детонации.  [c.143]


Смотреть страницы где упоминается термин Двигатель Разрушение : [c.574]    [c.59]    [c.142]    [c.117]    [c.281]    [c.471]    [c.435]    [c.303]    [c.83]    [c.4]    [c.16]    [c.27]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.14 ]



ПОИСК



Механизмы разрушения деталей и агрегатов двигателей

Разрушение дисков компрессора двигателя Д-ЗОКУ

Разрушение дисков компрессоров двигателя

Разрушения дисков I ступени КНД двигателя НК



© 2025 Mash-xxl.info Реклама на сайте