Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические ориентации

Принцип действия. Гироскопом в широком смысле слова можно назвать твердое тело, имеющее одну неподвижную точку и совершающее вокруг нее сложное вращательное движение. Широкое применение в технике нашли динамические симметричные гироскопы, у которых центральный эллипсоид инерции есть эллипсоид вращения. Если неподвижная точка, вокруг которой движется гироскоп, совпадает с его центром масс, то такой гироскоп называется уравновешенным или астатическим. Симметричный гироскоп, будучи приведен в быстрое вращение вокруг его оси динамической симметрии, обладает способностью сохранять свою ориентацию в пространстве и сопротивляться внешним силам, стремящимся изменить эту ориентацию. Это свойство используется в разнообразных областях современной техники.  [c.358]


Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть разным.  [c.143]

Теплоотдача при конденсации пара в трубах. Если в трубу с охлаждаемой поверхностью подводится пар, то по мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G и его скорость w" падают по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным.  [c.154]


В процессе разработки лопатки новых конструкций подвергаются многочисленным специальным испытаниям, не принятым для уже освоенных моделей. Например, лопатки могут быть разрезаны по длине для определения фактического качества сварки, распределения и ориентации волокна. Проводятся динамические  [c.63]

Глава 4 предоставила нам необходимый кинематический аппарат для исследования движения твердого тела. Углы Эйлера дают нам систему трех координат, которые, хотя и не вполне симметричны, однако удобны для использования их в качестве обобщенных координат, описывающих ориентацию твердого тела. Кроме того, метод ортогональных преобразований и связанная с ним матричная алгебра дают мощный и изящный аппарат для исследования характеристик движения твердого тела. Мы однажды уже применили этот аппарат при выводе уравнения (4.100), связывающего скорости изменения вектора в неподвижной системе координат и в системе, связанной с телом. Теперь мы применим этот аппарат для получения динамических уравнений движения твердого тела в их наиболее удобной форме. Получив эти уравнения, мы сможем рассмотреть несколько простых, но важных случаев движения твердого тела.  [c.163]

S3. Введение. Мы видели, что задача о свободном вращении твердого тела в значительной степени упрощается в случае кинетической симметрии относительно оси. Конечно, решение, данное в 47, не является более полным, чем в общем случае, но оно заключает в себе все то, что обычно представляет интерес. При рассмотрении динамической задачи мы, собственно говоря, как правило, не задаемся целью, определить положение каждой части системы в каждый данный момент времени. Мы больше обращаем внимание на основные особенности явления и стремимся проследить его последовательный ход, оставляя по возможности без внимания второстепенные подробности. Так, в случае тела вращения такого, как гироскоп, артиллерийский снаряд или планета, для нас представляет главным образом интерес изменение направления оси вращения. Динамическая особенность, позволяющая сосредоточить интерес только на этой стороне дела, заключается в том, что мгновенная ориентация тела относительно оси здесь не имеет влияния.  [c.129]

Особый интерес, с точки зрения художественного конструирования, представляет организация в интерьере операторского пункта динамического освещения. Такое освещение может быть применено для облегчения ориентации оператора в информационном поле, снятия зрительного утомления от монотонности и для стабилизации эмоционального состояния. Так, например, в операторском пункте сернокислотного цеха Воскресенского химического  [c.39]

При обращении к подпрограммам необходимо задавать как геометрические (длины звеньев, ориентация и т. д.) и динамические (масса и момент инерции) параметры группы звеньев, так и КП движения точек этих звеньев, при этом структуры входа и выхода всех подпрограмм взаимосвязаны.  [c.102]

Это свойство особенно ценно, когда болты работают в условиях динамических нагрузок. Благодаря повышению физико-механических свойств в результате механического упрочнения и ориентации волокон в направлении деформации создается возможность использовать обычные углеродистые стали вместо легированных сталей. Это создает дополнительную экономию на разнице в стоимости материалов.  [c.58]

Шумомер первого класса должен иметь частотные характеристики Л, В, С и Лин. Допускается дополнительное применение частотной характеристики D. Эти характеристики определяют зависимость показаний шумомера от частоты, измеренной на чистых тонах и приведенной к нулевому уровню на частоте 1000 Гц. Характеристика направленности шумомера должна быть круговой с допустимыми отклонениями от главной оси 90° в диапазоне частот 500. .. 12500 Гц и 30° в диапазоне частот 2000. .. 8000 Гц. Характеристика направленности шумомера— зависимость показаний шумомера от угла ориентации микрофона относительно направления прихода звуковой волны. Главная ось микрофона (шумомера) совпадает с его осью симметрии или с направлением максимальной чувствительности. Нижний предел динамического диапазона шумомера не более 30 дБ (А), с учетом коррекции по характеристике А. Уровень собственных шумов должен быть не менее чем на 5 дБ ниже нижнего предела динамического диапазона. Нормируется также эквивалентный уровень звука в дБ (Л), В), (С), (D) при воздействии на шумомер определенной вибрации, переменного магнитного поля или ветра, если при этом акустическими помехами, действующими на микрофон, можно пренебречь.  [c.173]


Постоянное увеличение скорости, дальности и времени полета КЛ аппаратов требует соблюдения высокой точности траектории движения при уменьшении веса и энергоемкости бортовых систем ориентации и стабилизации (веса и количества газобаллонов, моментных двигателей и т. д.). Эта цель может быть достигнута благодаря изготовлению аппаратов, у которых конструктивные оси являются главными осями инерции, т. е. путем динамического уравновешивания аппаратов.  [c.248]

В ШВП с вкладышами, установленными в окна гаек с помощью элементов ориентации, совмещающими канал возврата с резьбой гайки в зоне контакта шариков с гайкой, динамическая грузоподъемность выше в 1,02 раза, а долговечность - 1,06 раза.  [c.793]

Влияние ориентации на механические потери кристаллизующихся полимеров осложняется Изменением степени кристалличности в процессе ориентации. Ориентация макромолекул при вытяжке при низких или повышенных температурах облегчает кристаллизацию. Поэтому иногда при оценке роли ориентации экспериментатор, не подозревая об этом, может сравнивать аморфный неориентированный с. ориентированным полимером, который в процессе эксперимента стал кристаллическим. Однако обычно ориентация изменяет динамические механические свойства в большей степени, чем изменение степени кристалличности [31, 256]. Часто общий эффект ориентации и кристаллизации приводит к смещению в сторону более высоких температур и уменьшает интенсивность механических потерь  [c.123]

Рис. 4.34. Температурные зависимости динамического модуля сдвига и логарифмического декремента затухания ориентированного полиэтилентерефталата при кручении под углом 0° (/), 90° (2) и 45° (3) к направлению ориентации [239]. Рис. 4.34. <a href="/info/191882">Температурные зависимости</a> <a href="/info/174806">динамического модуля сдвига</a> и <a href="/info/12126">логарифмического декремента затухания</a> ориентированного полиэтилентерефталата при кручении под углом 0° (/), 90° (2) и 45° (3) к направлению ориентации [239].
Полезно рассмотреть несущий винт без относов осей ГШ и подшипников ОШ. Хотя такая конструкция практически неприемлема, она удобна для описания основных свойств шарнирного винта. ГШ и ОШ без относа эквивалентны креплению лопасти к втулке на кардане, который допускает произвольную ориентацию вала несущего винта ири сохранении лопастью неизменного положения в пространстве. В этом случае ориентация вала не оказывает влияния на аэродинамические и динамические характеристики лопасти значение имеет только взаимное расположение ППУ и ПКЛ. Поэтому при анализе в качестве плоскости отсчета можно использовать ППУ или ПКЛ, не принимая во внимание ориентацию вала винта, пока не потребуется рассчитать углы наклона тарелки автомата перекоса. В последнем случае эквивалентность махового и установочного движений позволяет  [c.167]

Ориентация подвергается непрерывному воздействию диффузии из-за броуновского движения. Когда броуновское движение пренебрежимо мало, устанавливается т оо, как только достигается установившееся состояние течения, и поэтому система является простой, линейной с вязкостью г)оо. Когда влияние броуновского движения превалирует над силами ориентации, сохраняется т о, и течение в этом случае есть также простое, линейное. В общем случае при любой температуре и любой скорости сдвига будет устанавливаться динамическое равновесие между силами диффузии и ориентации, с соответствующим значением т], причем т]о>  [c.251]

Второй возможный механизм развития трещины базируется на следующих представлениях. После объединения микротрещины с макротрещиной идет непрерывное динамическое развитие макротрещины по тем же законам, по которым развивалась и микротрещина отсутствие заметного пластического деформирования у верщины быстро развивающейся трещины (недостаточно времени на реализацию релаксационных процессов в вершине) рост трещины по плоскостям спайности с преодолением различных барьеров типа границ зерен, фрагментов, блоков (см. раздел 2.1). При реализации второго механизма энергия, необходимая для старта трещины, будет отличаться от энергии, идущей на ее рост. Энергия зарождения хрупкого разрушения обусловлена пластическим деформированием, необходимым как для зарождения микротрещин, так и для реализации деформационного упрочнения, обеспечивающего рост напряжений до величины S . Для распространения трещины от одного зерна к другому необходима эффективная энергия не только для образования новых поверхностей, но и для компенсации дополнительной работы разрушения, идущей на образование ступенек и вязких перемычек при распространении трещин скола [121, 327]. Образование ступенек на поверхности скола, как известно, связано с различной ориентацией зерен. При переходе трещины скола через границу зерна в новом зерне из-за различий в ориентации происходит разделение трещины на ряд отдельных трещин, которые распространяются параллельно по кристаллографическим плоскостям спайности и прп объединении образуют ступеньки скола. При распространении макротрещины через отдельные неблагоприятно расположенные зерна, для которых плоскости спайности сильно отклонены от направления магистральной трещины, могут наблюдаться вязкие ямочные дорывы (перемычки) [114, 327]. Учитывая, что для старта макротрещины требуется пластическое деформирование, по крайней мере в масштабе, не меньшем, чем диаметр зерна, а для ее развития масштаб пластического деформирования ограничен размером перемычек между микротрещинами, можно заключить энергия G , необходимая для старта трещины, выше, чем энергия ур, требующаяся на ее развитие. Эксперименты для большинства конструкционных металлических материалов подтверждают сделанное заключение [253]. Следовательно, динамическое развитие трещины при хрупком разрушении наиболее вероятно происходит по второму механизму. Кроме того, в пользу второго механизма говорят имеющиеся фрактографические наблюдения (рис. 4.19), которые иллюстрируют переход трещины скола через границу зерна со значительной составляющей кручения и расщепление зерна рядом параллельных друг другу трещин. Если бы развитие трещины  [c.240]


Эта необходимость определяется прежде всего двумя видами изменений в подсистеме графического отображения информации. Первый из них связан со сменой доминирующей ориентации графической модели в поисковом конструировании с коммуникативной функции на познавательную. Второе изменение свя1ано с присущим ЭВМ способом визуализации геометрического образа изделия. Самый простой для машины и одновременно наиболее удобный для восприятия человеком способ графического представления геометрического образа, заложенного в математической модели изделия, заключается в построении параллельной проекции. Предусматривается возможность динамического восприятия ее на дисплее. Необходимые операции, связанные с уточнением пространствен-  [c.20]

Обобщением этого факта на случай произвольного движения является гипотеза о том, что касательные напряжения, а также зависящие от ориентаций плои адок части нормальных напряжений пропорциональны соответствующим скоростям деформаций. Иными словами, предполагается во всех случаях движения жидкости линейная связь между вязкостными напряжениями и скоростями деформаций. При этом коэффициентом пропорциональности в формулах, выражающих эту связь, должен быть динамический коэффициент вязкости д,, так как для прямолинейного движения эти формулы должны превращаться в формулу Ньютона (1.11) для вязкостного напряжения.  [c.80]

В 1969 г. Лабораторией динамики полета ВВС США была начата разработка деталей главного шасси из композиционных материалов. Эти детали характеризуются сложной конфигурацией и многими конструктивными особенностями, отличающими их от элементов конструкции планера. Кроме того, шасси должно выдерживать высокие динамические нагрузки, возникающие в результате удара при посадке. Внешний обод бокового подкоса (рис. 27), образующий фланец, изготовлен непрерывной намоткой, обеспечивающей укладку слоев по схеме (0,/ 15/02)т- В работающей на сдвиг стенке материал имеет ориентацию слоев (Ог/гЫЗз) . Слоистый пластик на основе рубленых волокон использован для бобышек и узлов наружной подвески. Отверждение детали в сборе производится совместно с алюминиевыми втулками. Углепластиковый двухзвенник (рис. 28) также изготовлен из композиции на основе непрерывных и рубленых волокон и эпоксидной матрицы.  [c.167]

Рассматриваются особенности динамического диагностирования механизмов угловой ориентации цепной структуры, обладающих значительными моментами инерций выходных звеньев. Для их диагностирования предложена поликаиальная модель. Приведена методика определения графическим способом составляющих угловых зазоров.  [c.173]

Динамический модуль сдвига (Н/см ) и тангенс угла механических потерь (tg 6) определяются (ГОСТ 20812—75) для уетановления температуры стеклования, оценки стеиепи поперечного сшивания сетчатых полимеров и граництл совместимости полимеров с пластификаторами, изучения влияния кристалличности и ориентации па вязкоупругое поведение полимеров.  [c.235]

В настоящее время КИМ выпускают с ручным управлением и автоматизированной обработкой результатов измерения, а также с полностью автоматизированным процессом обработки, измерения и управления. Разрабатываются возможности сочетания КИМ с технологическим оборудованием (в первую очередь, со станками с числовым программным управлением). Дальнейшее развитие КИМ происходит в направлении создания измерительно-информационных систем с полной или частичной автоматизацией, с математической обработкой результатов измерения при установке детали без ее ориентации в пространстве и измерении в динамическом режиме [2]. В информационную систему КИМ вводятся данные чертежа, создаются КИМ самообучающего типа, корректирующие программу по мере измерения деталей. Многие КИМ входят в комплексные участки с дистанционным централизованным управлением от ЭВМ. Современные КИМ пригодны для решения широкого спектра измерительных задач в различных отраслях промышленности.  [c.318]

К числу наиболее важных конструктивно-технологических мероприятий, повышающих эксплуатационные свойства мащин, можно отнести улучшение формы деталей с целью снижения напряжений в опасном сечении применение технологических способов, обеспечивающих наи-лучщую текстуру материала детали (штампованные заготовки, формообразование, например зубьев, зубчатых колес накатыванием) уменьшение количества операций и правильное их чередование снижение уровня динамических нагрузок повышением точности изготовления и сборки, а также применением оптимальных зазоров и др. снижение концентрации нагрузки вследствие повышения точности изготовления и сборки, увеличения жесткости узла, оптимального взаимного расположения деталей, узлов и др. повышение чистоты впадин у зубчатых колес обеспечение рациональной ориентации обработанных рисок и оптимальной шероховатости рабочих поверхностей деталей обеспечение стабильности физико-механических свойств поверхностного слоя, особенно вблизи опасного сечения, для чего основание впадин торцов зубчатых колес следует шлифовать до химико-термической обработки обеспечение стабильности физико-механических, химических и геометрических свойств материала деталей обеспечение наиболее благоприятной эпюры остаточных напряжений при отсутствии локальных растягивающих напряжений в упрочненном слое применением упрочняющей обработки обеспечение контроля изделий в процессе проектирования и производстве на соответствие их основных эксплуатационных свойств техническим условиям на изготовление и приемку.  [c.413]

Широкий динамический диапазон регистрирующих, усилительных и анализирующих устройств в сочетании с представлением спектров отклика в логарифмическом масштабе позволяет получать спектрограммы откликов, содержащие одновременно четко выделяемые реакции на шум и на действие узкополосных возбудителей. Это дает воз.можность для каждого реЖ Има работы турбомашины оценивать взаимиую ориентацию спектров возбуждения и спектров собственных частот рабочего колеса. По превышению узкополосных всплесков иад откликом на шум можно судить об относительной величине амплитуд гармонических составляющих обобщенных возбуждающих сил [18, 33].  [c.195]

ДИНАМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ЯДЕР — ориентация ядерных спинов в заданном направлении под действием эл.-магн. ВЧ-полей (см. Ориентироваи,ные ядра).  [c.625]

Динамическую и статическую прочность усов сапфира при повышенных температурах впервые исследовал Бреннер. Он отметил две наиболее интересные особенности. Масштабная зависимость прочности при растяжении усов сапфира выше 1500° С отсутствует, а в интервале 1100—1400° С наблюдается резкое понижение предела прочности. Однако заметных следов пластической деформации не было обнаружено даже при 2000° С. Близкие результаты получены при изгибе усов сапфира при 700—1600° С. Однако в работе Солтиса была обнаружена пластичность усов сапфира ниже 900° С и даже при комнатной температуре. Наконец, недавние исследования [330] влияния ориентации, условий роста, примесей и Состояния поверхности на прочность нитевидных кристаллов сапфира при 350—1800° С привели к выводу о том, что данные Бреннера для зависимости прочности от температуры завышены.  [c.358]

На втором этапе каким-либо численным методом интегрируют уравнения движения деформируемой конструкции с начальным прогибом при заданной внешней подвижной нагрузке. Многочисленные результаты решений и экспериментальных исследований несущей способности и динамической устойчивости замкнутых цилиндрических и конических оболочек, а также 1шастин и панелей при действии на них ударных волн с различной ориентацией фронта приведены в работах [16, 37]. В ряде случаев граница устойчивости достаточно хорошо описывается выражением вида (7.7.4). Например, при действии волны давления на коническую оболочку (фронт волны перемещается параллельно оси конуса) одна из асимптот гиперболь соответствует статическому критическому внешнему давлению найденному для цилиндрической оболочки с радиусом, равным среднему радиусу усеченной концческой оболочки, и длиной, равной длине образующей конуса. Другая асимптота  [c.516]


Установлено, что модули динамического изгиба остаются высокими при повышенных температурах. Нанример, композиционный материал с 30 об. % волокна, имевший при комнатной температуре модуль упругости 32 10 фунт/кв. дюйм (22 498 кгс/мм ), сохранял значение 29 10 фунт/кв. дюйм (20 389 кгс/мм ) при 1200° F (649° С). Методом резонирующей консольной балки было определено сопротивление усталости. Композиционные материалы по сравнению с матрицей обнаружили тенденцию к некоторому понижению сонротивления усталости в принятых условиях испытания. Было высказано нредполоя ение, что вклад в наблюдаемый эффект вносит несколько факторов. Наиболее важным среди них считали эффект надреза, вызываемый свободными волокнами на поверхности. В число предполагаемых факторов включены также измененное состояние матрицы из-за наличия кислорода и предпочтительной ориентации и остаточные напряжения. По-видимому, контролирующим фактором является деформация матрицы.  [c.312]

Динамический продольный модуль Юнга обычно больше, чем модуль Юнга неориентированных полимеров [31, 109, 174, 235, 237, 256—265]. Типичный. пример приведен на рис. 4.32 [20]. В неориентированных полимерах модуль упругости определяется главным образом ван-дер-ваальсовскими связями. В противоположность этому в ориентированных полимерах при растяжении в направлении ориентации силы, действующие параллельно полимерным цепям, должны деформировать углы между ковалентными связями или даже сами связи. В высокоориентированных волокнах, получаемых холодной вытяжкой, E i может в десятки раз превышать модуль упругости неориентированного полимера. Предложено уравнение, связывающее модуль упругости Ei со степенью ориентации [258]  [c.121]

Влияние ориентации на механические потери изучено меньше, чем влияние на модули упругрсти, и имеющиеся экспериментальные результаты часто противоречивы. Например, для полистирола было установлено, что при ориентации отношение Е"1Е слегка возрастает в продольном направлении [109]. Это возрастание может быть связано не только с эффектом ориентации, но и с увеличением свободного объема при резком охлаждении ориентированных образцов. Имеются данные, что при ориентации поли-этилентерефталата отношение О"/О уменьшается при криогенных температурах [267] или практически не изменяется [268]. Ориентация полиакрилонитрильных пленок сопровождается возрастанием Е ЧЕ в продольном и уменьшением в поперечном направлении. Небольшая ориентация АБС-пластиков вызывает увеличение механических потерь [273]. Предполагается, что низкотемпературный вторичный релаксационный переход (у-пере-ход) при 210 К в полиэтилентерефталате связан с молекулярным движением в аморфных областях, и ориентация резко уменьшает интенсивность максимума потерь [239, 267]. Зависимость динамических механических свойств при сдвиге полиэтилентере-фталата от направления оси кручения по отношению к оси ориентации при криогенных температурах показана на рис. 4.34 [239]. Модуль при сдвиге, измеренный под углом 45°, выше, чем модули, измеренные под углами 0° и 90°. В величину модуля упругости при сдвиге, измеренного под углом 45°, дает значительный вклад продольный модуль Юнга (Приложение 4), а под углом 90° — преимущественно продольно-трансверсальный модуль О т- Модуль, измеренный под углом 90°, помимо вклада модуля Отт, содержит также небольшой вклад модуля Отт, поэтому указанное значение модуля несколько меньше, чем модуля, измеренного под углом 0°.  [c.123]

Структура органоволокна неоднородна. Большая степень ориентации фибрилл в направлении оси волокон обеспечивает им высокие прочность и жесткость при растяжении в этом направлении. Однако неоднородность структуры волокон обусловливает различные напряженные состояния в отдельных ее элементах. Между этими элементами возникают напряжения сдвига, которые приводят сначала к расщеплению волокна вдоль оси, а затем — к разрушению. Такой механизм разрыва волокон вызывает большую работу разрушения в целом. Это характеризует высокую прочность при статическом и динамическом нагружении. Органоволокниты,  [c.460]

Здесь нулевая гармоника 0о — это средний угол установки лопасти, а первые гармоники ряда характеризуют циклическое изменение угла установки с частотой 1. Изменение угла установки лопасти происходит по двум причинам. Во-первых, при работе винта возникают упругие деформации лопасти и элементов цепи управления (динамические степени свободы). Это движение описывают уравнения, которые выводятся из условия равенства нулю суммы моментов, действующих на лопасть относительно ее оси. Во-вторых, угол установки изменяется вследствие действия системы управления. Именно изменением угла установки лопастей летчик управляет вертолетом. Моменты относительно оси лопасти малы, а изменения подъемной силы, вызванные действием управления, значительны, так как происходит непосредственное изменение угла атаки. Поэтому управление углом установки лопастей — весьма эффективный способ управления силами, создаваемыми несущим винтом. Обычно управление охватывает только нулевую и первую гармонику, т. е. задает угол установки 0 = 0о-f 0i os -f 0и sirni без учета деформаций. Среднее значение 0о называют общим шагом винта, а сумму первых гармоник с коэффициентами 0i и 0и — циклическим шагом. Изменение общего шага позволяет управлять в основном средними силами на лопастях, а значит, величиной силы тяги винта, изменение же циклического шага дает возможность управлять ориентацией плоскости концов лопастей (т. е. первыми гармониками махового движения), а значит, наклоном вектора силы тяги. Угол 0i определяет поперечный наклон вектора силы тяги, угол 01S — продольный.  [c.163]


Смотреть страницы где упоминается термин Динамические ориентации : [c.502]    [c.52]    [c.237]    [c.86]    [c.97]    [c.521]    [c.70]    [c.64]    [c.393]    [c.125]    [c.63]    [c.153]    [c.399]    [c.471]   
Механические свойства полимеров и полимерных композиций (1978) -- [ c.120 , c.125 ]



ПОИСК



Ориентация



© 2025 Mash-xxl.info Реклама на сайте