Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические характеристики конструкции Методы определения

Определение динамических характеристик конструкций, содержащих жидкость, является достаточно сложной задачей, теоретическое решение которой далеко не всегда возможно. Поэтому широкое применение находят экспериментальные методы, в основе которых лежат динамические испытания натурных конструкций или их моделей.  [c.367]

В очередном выпуске приведены результаты исследований накопления повреждений и образования трещин, динамической концентрации напряжений вокруг отверстий, больших прогибов гибких оболочечных элементов и процессов газо- и гидростатического формования. Проанализированы вопросы устойчивости оболочек, включая многослойные оболочечные конструкции, при простом и комбинированном нагружениях. Рассмотрены методы расчета лепестковых упругих муфт, многослойных сосудов давления, динамических характеристик пластинчатых систем, а также другие вопросы прочности как в общей постановке для широкой номенклатуры машиностроительных конструкций, так и в виде конкретных рекомендаций для определенных узлов и деталей машин.  [c.136]


В настоящей серии будут рассмотрены три группы основных вопросов определения прочности и ресурса ВВЭР 1) конструкции, условия эксплуатации и методы расчетного определения усилий и напряжений (данная книга) 2) методы и средства экспериментального определения напряженно-деформированного состояния на моделях, стендах и натурных конструкциях ВВЭР при пусконаладке и в начальный период эксплуатации 3) методы определения расчетных характеристик сопротивления конструкционных реакторных материалов деформированию и разрушению и расчетов прочности и ресурса при статическом, циклическом, динамическом и вибрационном нагружении.  [c.8]

Разработка, создание и использование новых средств экспериментального исследования материалов и конструкций. Решение проблемы обеспечения надежности и ресурса изделий машиностроения, как уже отмечалось, в известной мере определяется уровнем разработки методов и средств экспериментальной оценки действительной нагруженности конструкций, напряженно-деформированных и вибрационных состояний, параметров структуры материалов, характеристик прочности и трещиностойкости, динамических характеристик прочности, трещиностойкости и тела человека—оператора машины при вибрационных и других воздействиях. Это обусловлено необходимостью повышения объема экспериментальной информации с возрастанием вероятности безотказной работы, которую необходимо обеспечить при создании ответственных конструкций. Полученная информация является весьма ценной для оценки завершенности экспериментальной отработки машин и конструкций при проведении лабораторных и натурных испытаний, а также для определения влияния условий эксплуатации на изделия и установления остаточного ресурса конструкций.  [c.28]

Эксплуатационные и лабораторные испытания. Динамические испытания проводятся в рабочих условиях и в условиях лабораторною исследования узлов и деталей. Экспериментальные исследования вибраций в рабочих условиях служат для оценки прочности и надежности конструкции, являются средством выяснения причин имевших место неполадок и аварий и представляют наиболее надежный метод определения динамических характеристик.  [c.381]

Для определения динамических характеристик используют различные методы. Многие из них основаны на вынужденных колебаниях конструкции под действием гармонических сил. Соответствующая математическая модель имеет вид  [c.375]


Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]

В настоящей главе изучение движения простейшей модели снаряда в виде одномерного движения материальной точки обобщено на случай двух- и трехмерного движения. Отсюда естественно возникает проблема оптимизации траектории, которая оказывается тесно связанной с целым рядом смежных проблем. Простейшей задачей из этого круга проблем является задача определения оптимального управления, когда динамические характеристики снаряда заданы и требуется найти такую траекторию, которая оптимизирует некоторую заданную величину. Для случаев, когда поле сил зависит от скорости и координат снаряда, дана общая постановка задачи оптимизации траектории, а в случаях, когда силовое поле однородно или когда сила зависит от расстояния линейно, оказывается возможным получить решение в замкнутой форме. Это особенно важно в применении к баллистическим снарядам (нанример, снарядам дальнего радиуса действия класса земля — земля или носителям спутников), где расстояние, проходимое за время выгорания топлива, мало по сравнению с земным радиусом. Простой и в то же время почти оптимальной траекторией в этих случаях оказывается траектория гравитационного разворота при движении снаряда в плотной атмосфере и затем переход на траекторию, определяемую соотношением (2.6). Хотя точного решения уравнений движения по траектории гравитационного разворота не существует, все же можно построить ряд графиков, позволяющих во многих случаях подбирать требуемые значения параметров. Если ограничиться лишь получением решений, удовлетворяющих условию стационарности, то обычными методами вариационного исчисления можно исследовать те задачи оптимизации, в которых масса снаряда, программа скорости истечения и время выгорания, так же как и программа управления, являются варьируемыми функциями. Для того чтобы найти решения, являющиеся действительно максимальными или минимальными в определенном смысле, нужно проводить специальное исследование каждого отдельного случая, так как не всегда решение, удовлетворяющее требованию стационарности, является оптимальным, и наоборот. В тех задачах, где скорость истечения есть известная функция времени, как, например, это имеет место в жидкостных ракетных двигателях, из анализа следует лишь то, что оптимальной программой для М ( ) будет, как правило, программа импульсного сжигания топлива. Поэтому для получения практически интересных результатов необходимо проводить более глубокий анализ, с учетом таких факторов, как параметры двигателя, топливных баков и т. д., при одновременном учете характера траектории полета снаряда. Для выполнения такого рода анализа используется схема расчета, где анализ различных элементов Конструкции и групп уравнений (одной  [c.63]


В образцах в зависимости от их форм и размеров, типа возбудителя и приемника, способа крепления и схемы приложения динамической нагрузки можно возбуждать продольные, изгибные, крутильные и более сложные виды колебаний. Данный метод можно использовать также при вибрационных испытаниях крупногабаритных изделий, однако при этом существенно изменяется методика испытаний, способы приложения нагрузок, а также способы возбуждения и регистрации колебаний. Метод используется также при оценке интегральной жесткости крупногабаритных конструкций [11, 22] и не может быть использован при локальном определении физико-механических характеристик в изделии. Для практического применения этого метода необходимо знать геометрические размеры изделия и плотность материала, обеспечить условия закрепления изделия на опорах и преобразователей на изделии, а также нормальные температурно-влажностные условия окружающей среды.  [c.87]

Повышение скоростей движения машин технологического назначения (тракторов, автомобилей, подвижного состава железных дорог), достигнутое в созданных рядом отраслей конструкциях увеличенной эффективности и проходимости, а также успешное применение импульсных процессов в теХ нологии формоизменения и упрочнения, были связаны с разработкой задач о распространении упругих и упруго-пластических волн, преимущественно в одномерной постановке. Применение метода характеристик и изыскание вычисляемых алгоритмов уравнений упруго-пластических деформаций позволили решить ряд задач расчета динамических усилий и деформаций при соударении деталей и при импульсных процессах формообразования, образующих зоны упрочнения на поверхности деталей. Большое практическое значение получили экспериментальные работы этого направления, позволившие измерить как протекание деформаций во времени, так и получение уравнений состояния, необходимых для определения действительных усилий. Полученные уравнения состояния показали существенное значение эффекта повышения сопротивления пластическим деформациям и их запаздывания в зависимости от скорости процесса.  [c.39]

Ввиду многообразия конструкций современных многопозиционных автоматов, трудоемкости экспериментальных исследований и сложности точных динамических методов расчета целесообразно для определения параметров поворотных устройств и выбора закона движения применять моделирование на электронных моделирующих устройствах. При этом необходимо учитывать упругость звеньев, наличие зазоров, силу трения и характеристику электродвигателя.  [c.64]

Продемонстрировать влияние как температуры, так и частоты колебаний, был выбран метод, основанный на исследовании колебаний балки. Кроме того, так как материал часто используется в конструкциях слоистого типа, необходимо воспроизвести условия, соответствующие сдвигающей нагрузке. Поэтому были выбраны трехслойные балки. Зависимости динамических перемещений от частоты колебаний для типичной трехслойной балки с демпфированием показаны на рис, 3.20 для различных значений температур, диапазон которых охватывает как область стекловидных материалов, так и область резиноподобных материалов. На рис. 3.21 и 3.22 показаны зависимости частоты и коэффициента потерь материала для каждой формы колебаний от температуры. Каждая точка, либо являющаяся непосредственным результатом эксперимента, либо принадлежащая некоторой сглаживающей данные экспериментов кривой, может быть использована для определения характеристик материала. Однако пользоваться сглаживающими кривыми рекомендуется в том случае, когда разброс экспериментальных данных невелик. При выполнении таких подсчетов предполагается, что геометрические характеристики балки и частоты ее колебаний без  [c.133]

Разработкой и совершенствованием гидропередач заняты многие научно-исследовательские институты, конструкторские организации и заводы различных отраслей промышленности. Одним из основных этапов создания новых конструкций гидропередач является их исследование с целью определения рабочих характеристик изучения внутренних процессов и влияния их на потери мощности и силовой режим гидромашины выявления надежности и долговечности работы гидромашин изучения влияния изменения конструктивных элементов гидропередачи на ее внешнюю характеристику проверки существующих методов расчета и получение исходных данных для разработки новых методов расчета изучения динамических свойств гидропередачи и влияния их на  [c.3]

При определении динамических нагрузок методом решения дифференциальных уравнений движения рабочая среда (в частности, грунты или встречающиеся на пути рабочих органов, препятствия), так же как и элементы конструкции машины,, могут быть в расчетной схеме условно заменены сосредоточенными массами и пружинами с линейной характеристикой.  [c.102]

В монографии изложены методы расчета и оптимального проектирования многослойных конструкций, находящихся под воздействием статических и динамических нагрузок, температурных воздействий, и методы расчета на устойчивость особое внимание уделено конструкциям, состоящим из чередующихся слоев существенно различных лсесткостей, описаны методы определения эффективных физико-механических характеристик и оптимального выбора структуры и компонентов слоистых композиционных материалов.  [c.136]

Современный, основанный на методе конечных элементов подход является перспективным при исследовании динамических характеристик сложных конструкций, в которых могут возникать колебания различных форм. Многоцелевые пакеты программ NASTRAN, ANSYS и MAR [4.12] давно используются многими исследователями для решения задач о колебаниях конструкций. Обычно метод конечных элементов используется для определения резонансных частот и нормальных форм колебаний. Многие из этих пакетов программ позволяют учитывать в той или иной форме демпфирование. Однако если метод конечных элементов используется для получения количественных оценок влияния вязкоупругих материалов, имеющихся в рассматриваемой конструкции, то следует быть очень внимательным, чтобы не попасть в ловушку. Опасность здесь таят как необозримо большое время расчета на ЭВМ и высокие требования при работе с комплексными числами, характеризующими жесткости, так и чрезмерное упрощение задачи при попытке получить решаемую систему уравнений, поскольку эти уравнения будут неправильно моделировать реальную задачу.  [c.187]


Рассмотрены методы аналитического и экспериментального определения динамических характеристик гидромеханических передач с комплексными трехколесным,ч гидротрансформаторами, которые благодаря простоте конструкции и высокому КПД наиболее широко применяются на транспортных л дорожно-строительных машинах. Изложены вопросы теории, расчета переходных процессов, динамической устойчивости гидротрансформаторов. Приведены рекомендации по улучшению демпфирующих, и фильтрующих свойств, уменьшению крутильных колебаний в гидромеханической трансмвссии.  [c.2]

Математическве модели и динамические характеристики. В экспериментальных методах относительно физических свойств испытываемой конструкции делаются определенные допущения. Обычно предполагают, что конструкция является линейной, демпфирование слабым, параметры конструкции не изменяются с течением времени. При сделанных допущениях исходную математическую модель можно записать в виде следующего матричного уравнения  [c.375]

Состав измерительной и регистрирующей аппаратуры зависит от сложности конструкции, используемого метода, точности определения динамических характеристик. В простых случаях можно ограничиться набором датчиков с усилителями и шлейфовыми осциллографами. При частотных испытаниях наибольшее расттространение получили датчики ускорений. Для повышения эффективности измерения амплитуд и фаз используют электронные вольтметры и фазометры, а также печатающие устройства. При испытаниях сложных конструкций применяют многоканальные вибрационные комплексы, включающие ЭВМ.  [c.379]

В производственных условиях перед контролером часто возникает вопрос о возможности применения того или иного ш,упового прибора для измерения шероховатости поверхности изделий из мягких материалов. Профилометрам и профилографам присущи определенные погрешности, объясняемые природой контактного метода измерений. Основными пара-.метрами прибора, которые в первую очередь определяют величину искажений при ощупывании поверхности, являются, как указывалось выше, радиус закругления щупа г и усилие Р. Если радиус закругления иглы. можно рассматривать на определенном отрезке времени как величину постоянную для данного прибора, то измерительное усилие, в зависимости от динамических характеристик ощупывающей системы, скорости ощупывания и характера профиля контролируемой поверхности, может сильно изменяться- Это обстоятельство учитывается при конструировании приборов, В современных профилометрах и профилографах, благодаря рациональной конструкции датчиков, а также уменьшению скорости ощупывания добиваются значительного снижения доли динамической составляющей Р,) в общей величине усилия Р. Если радиус закругления иглы у большинства профилометров принят равным 10—15 мк. то измерительное усилие колеблется в весьма широких пределах и достигает в некоторых конструкциях 1—2 гс. Естественно, что при таких уси- лиях на поверхности контролируемого изде.лия, в зависимости от меха нических свойств, и в первую очередь, от твердости материала, будут оставаться более или менее глубокие царапины. Царапание, как следует из анализа, приводимого в главе VI, может по-разному сказаться на показаниях щуповых приборов. Когда размеры впадин велики по сравнению с размерами щупа (при пологом профиле с большим шагом неровностей), а перепад усилия ощупывания на дне впадины и на выступе характеризуется небольшой величиной, погрешности измерения незначительны. При узких микронеровностях, вследствие различных условий деформаций материала на гребешке и во впадине, происходит сглаживание профиля и соответствующее уменьшение измеренной высоты. Это уменьшение тем значительней, чем мягче материал контролируемого изделия и чище его поверхность. На фиг. 115 схематически показаны общие соотношения мелкду данными, получающимися при ощупывании, поверхности иглами с радиусами закруглений г= 10 мк при измерительных усилиях — 2 с С и показаниями оптических бесконтактных приборов. По оси абсцисс графика отложены классы чистоты, установленные с помощью оптических приборов по оси ординат — классы, получающиеся при ощупывании иглами, имеющими указанные выше г и Р. Кривая Т относится к теоретической поверхности абсолютно твердого тела с весь ма пологими неровностями кривая Л4 —- к поверхности изделий с твердостью Ял <20 кгс1мм и углом раскрытия впадин 100°. Между этими двумя кривыми располагаются кривые, относящиеся к поверхностям изделий из стали (С), бронзы (б) и т. п. При контроле профилометрами, имеющими значительные усилия ощупывания чистых поверх-  [c.154]

Раздел второй (авторы В. П. Майборода, В. П. Мальцев, В. И. Мяченков, Г. Н. Ольшанская) посвящен численной и программной реализации метода суперэлементов для определения НДС и динамических характеристик осесимметричных и призматических тонкостенных обол очечных конструкций.  [c.7]

В монографии термин "трещиностойкость имеет широкий смысл, включающий способность металлических изделий и конструкций сопротивляться развитию трещин при статическом, циклическом и динамическом нагружении, П чем в ряде случаев с учетом возможного влияния коррозионной среды и температуры. На ряде примеров показано, что вновь разрабать1ваемые методы определения характеристик трещи-ностойкости являются развитием и совершенствованием существующих стандартных методов испытаний. В этом проявляются взаимосвязь и преемственность существующих с вновь разрабатываемыми методами испытаний по определению характеристик механических свойств металлов. (  [c.5]

Большинство авторов данной монографии принимали активное участие в работе Научно-методической комиссии по стандартизации в области механики разрущения. Основополагающим принципом работы комиссии после положительного опыта проведения базового эксперимента стала организация предварительных сериальных испытаний образцов по оценке влияния различных факторов на конечные результаты испытаний. В монографии представлена часть результатов таких испытаний по широкому комплексу вопросов статической, циклической и динамической трещиностойкоети, особенностей структуры и технологии получения конструкционных материалов. Это относится к исследованиям характеристик упругопластического разрущения сталей (гл. 1) и алюминиевых сплавов (гл. 7), определению характеристик трещиностойкоети малоуглеродистых сталей при динамическом распространении трещины (гл. 1), разработке методов испытаний листового проката на слоистое растрескивание (гл. 4) и сварных соединений на трещиностойкость (гл. 3, 4), комплексным испытаниям на трещиностойкость плакированных сталей (гл. 5). Исследования в указанных направлениях во многом были инициированы заданиями Научно-методической комиссии по стандартизации в области механики разрушения. Полученные результаты в дальнейшем использовались при подготовке соответствующих нормативных документов и проведении поверочных раечетов на трещиностойкость различных технических систем и конструкций.  [c.8]

Приведенные в гл. 3 методы расчета динамической грузоподъемности и долговечности применяют для стандартизованных типов подшипников качения. Для определения этих же эксплус тацион-ных характеристик у применяемых в различных отраслях машиностроения специальных конструкций подшипников, а также шариковых и роликовых поворотных опор линейных направляющих и других механизмов с элементами качения рекомендуется следующая методика расчета на усталостное разрушение при условии, что поверхности этих элементов соответствуют техническим требованиям ГОСТ 520—89.  [c.464]


Несмотря на большую иоменклатзфу переключателей, используемых в РЭА (галетные, щеточные, кулажовые, (перекидные, кнопочные, клавишные, Движковые, микропереключатели), только на некоторые из них имеются государственные стандарты, на остальные — отраслевые стандарты. Так, ГОСТ 22719—П устанавливает термины и определения на микровыключатели и микропереключатели. Другие стандарты регламентируют габаритные, установочные размеры, схемы контактных групп и характеристики кнопочных универсальных переключателей (с фиксацией и без фиксации поворотной головки), устанавливают конструкцию, габаритные, установочные и присоединительные размеры и характеристики переключателей на пряжвния сети. ГОСТ 24606.13—82 регламентирует методы измерения сопротивления контакта и динамической и статической нестабильности переходного сопротивления контакта в коммутационных, установочных изделиях и электрических соединителях.  [c.11]


Смотреть страницы где упоминается термин Динамические характеристики конструкции Методы определения : [c.616]    [c.184]    [c.42]    [c.81]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.367 ]



ПОИСК



141 —149 — Определение характеристика

39 — Конструкция 31—32 — Методы

Динамические методы определения МУ

Конструкции Характеристика

Метод характеристик

Методы динамического

Методы определения динамических характеристик

НДС и динамических характеристик

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КОНСТРУКЦИЙ С ЖИДКОСТЬЮ (Г.Н. Микишев)



© 2025 Mash-xxl.info Реклама на сайте