Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольтметр электронный

Вольтметры электронные — Преимущества 171  [c.751]

Вольтметры электронные — Преимущества 1.171 — Применение  [c.624]

Электронные вольтметры и осциллографы  [c.171]

Недостатком обычных вольтметров магнитоэлектрической, электромагнитной и других электротехнических систем является их низкая чувствительность и малое входное сопротивление, т. е. большая мощность, потребляемая ими из измерительной цепи. Этого недостатка нет у электронных вольтметров, у которых перед измерительным прибором стоит предварительный усилитель, обеспечивающий их высокую чувствительность и большое входное сопротивление. Примером такого вольтметра может служить вольтметр ВЗ-6 с несколькими шкалами, из которых при максимальной его чувствительности предел одной шкалы 500 мкВ. Преимуществом электронных вольтметров является широкий диапазон частот, в котором с их помощью можно проводить измерения, и высокое входное сопротивление. Указанный выше вольтметр предназначен для диапазона частот 5 Гц—1 МГц, имеет входное сопротивление  [c.171]


В экспериментах снималась вольт-амперная характеристика (рис. 46). Максимумы силы тока отстоят друг от друга на равных расстояниях. Расстояние между последовательными максимумами х 4,9 В. Первый максимум расположен при U = 4, В. Однако это - измеряемая вольтметром разность потенциалов между катодом и сеткой-анодом. Фактическая же разность потенциалов несколько отличается от этого значения (в ускоряющих трубках с горячим катодом катод и анод сделаны из различных металлов). Следовательно, между катодом и анодом существует некоторая контактная разность потенциалов, которая ускоряет электроны даже в отсутствие приложенной извне разности  [c.76]

Электронно-лучевой индикатор (позиция 2 на рис. 5.7) служит для наблюдения за изменением температуры на оси и на поверхности пластины во времени. Цифровой вольтметр 3 используется для измерения температуры (точнее, напряжения, представляющего в АВМ температуру) в узлах модели. Цифровой индикатор 1 фиксирует машинное время в секундах.  [c.217]

Контролировать изменение температур во времени с помощью цифрового вольтметра и электронно-лучевого индикатора. Нижняя горизонтальная линия на экране соответствует оси времени, Верхняя кривая — температуре на оси пластины, нижняя кривая — температуре на поверхности пластины.  [c.218]

Затем в режиме работы АВМ Настройка выход блока деления /4 соединяют с вольтметром выходы блоков перемножения 15 и 16 (см. рис. II.7.3) соединяют с соответственно горизонтальным и вертикальным входами электронно-лучевого осциллографа для предварительной фиксации профиля АВМ переводят в режим Решение и включают ее в режиме Пуск АВМ определяет координаты профиля хи у и величину Ф, отображающую tg На осциллографе наблюдают изображение центрового профиля кулачка, а по вольтметру максимальное значение Ч .  [c.63]

Падение напряжения на каком-либо сопротивлении может быть измерено при помощи электронного вольтметра — прибора, состоящего из стрелочного (например, магнитоэлектрического) вольтметра и электронного усилителя. В тех случаях, когда измеряется падение напряжения на высокоомном сопротивлении, как это имеет место при испытаниях материалов, входное сопротивление усилителя должно быть достаточно велико. Усилители, имеющие высокое входное сопротивление (10 Ом и выше), называются электрометрическими. По сравнению с электростатическими электрометрами вольтметры с электрометрическими усилителями имеют меньшую входную емкость, меньшее время успокоения, хотя и более сложны по устройству.  [c.40]


Предметом стандартизации в ГСИ являются также методы измерений и поверки. Например, методика выполнения измерения для определения параметров по полю в раскрыве высоконаправленных антенн приведена в ГОСТ 8.309—78, методы и средства поверки дипольных измерительных антенн установлены ГОСТ 8.116—74, методы и средства поверки электронных вольтметров при высоких частотах даны в ГОСТ 8.118—74.  [c.85]

В последнее время в лабораторной практике все шире стали использоваться деформационные манометры с электрическими преобразователями. В этих манометрах упругая деформация чувствительного элемента преобразуется в электрический сигнал меняется давление — меняется и электрический сигнал. Выходной электрический сигнал можно измерить соответствующим прибором (вольтметром или амперметром), можно подать его на графопостроитель, можно записать с помощью специального цифропечатающего устройства (ЦПУ) и можно передать через соответствующий аналого-цифровой преобразователь (АЦП) в электронно-вычислительную машину (ЭВМ). Все это делает приборы этого класса чрезвычайно перспективными для лабораторий, тем более для учебных, так как позволяет представить полученную от прибора (в данном случае манометра) информацию практически в любом  [c.65]

В схему электронного блока входят трехкаскадный усилитель сигналов, приходящих от пьезодатчика интегратор сигналов усталостного выкрашивания пиковый вольтметр реле МКУ-48 СРЧ размыкания цепи катушки магнитного пускателя выпрямитель для питания анодных я экранных цепей ламп.  [c.275]

При измерениях напряжения прибор 1 вместо Uo измеряет Ui. Отклонение результата измерения (погрешность) уменьшается по мере уменьшения силы тока /] и соответствующего уменьшения угла наклона а. Вольтметры должны быть возможно более высокоомными. Обычные вольтметры магнитоэлектрической системы (с вращающейся рамкой) имеют внутренние сопротивления порядка нескольких десятков килоом на один вольт (/i=0,l мА) и для измерения потенциалов непригодны. Имеются приборы более высокого качества с соответствующим показателем около 1 МОм на I В (/> = 1 мкА). С их применением на практике можно измерять стационарные потенциалы однако время успокоения стрелки у них довольно велико (>1 с). Обычно для измерения потенциалов используют аналоговые показывающие вольтметры с электронным усилителем с входным сопротивлением порядка 10 —10 2 Ом. Время успокоения стрелки у них не превышает 1 с, а при электронном показании оно даже менее 1 мс.  [c.82]

По соображениям, изложенным в разделах 3.1 и 3.2, потенциалы следует измерять по возможности с применением высокоомных вольтметров с электронными усилителями. Вольтметры с усилителями имеют высокое входное сопротивление в пределах 1—100 МОм. Измеряемое  [c.91]

Эталонная установка 93103 воспроизводит ударное ускорение, рассчитываемое по массам трех тел, коэффициентам упругости элементов сопротивления и ускорению свободного падения. Рабочее тело связано упругими элементами с каркасом установки и вспомогательным телом, к которому через разрывной элемент приложено начальное усилие, создаваемое грузом. Отделяется груз от вспомогательного тела при помощи разъединительного узла. Градуируемый ударный акселерометр устанавливают на рабочем теле. Выходной сигнал акселерометра поступает на электронный осциллограф, второй вход которого соединен с генератором, контролируемым точным вольтметром.  [c.373]

Выходной сигнал прибора после необходимого преобразования может использоваться в качестве сигнала, управляющего параметрами технологического процесса, что позволит повысить эффективность производства изделий с заданными геометрическими размерами. В случае необходимости получения результата измерения в абсолютных единицах в устройство должен быть введен электронный блок, осуществляющий соответствующие преобразования электрического сигнала. При этом удобнее иметь выходной сигнал в аналоговом виде и использовать в качестве регистрирующего прибора цифровой вольтметр.  [c.268]


Обслуживание многих систем, проводимое в настоящее время, предполагает участие в той или иной степени человека. Однако в связи с тем, что сложность систем продолжает возрастать, необходимо повысить возможности оператора с помощью вспомогательных средств. Непосредственную помощь оказал ряд испытательных приборов (осциллографы, электронные вольтметры и т. п.).  [c.59]

Вначале по одному из датчиков диск вводился в резонансные колебания путем соответствующего изменения частоты вращения ротора возбудителя. При этом давление воздуха на входе в возбудитель устанавливали таким, чтобы исключить возможность повреждения датчиков и разрушения испытуемого диска. После того как фиксировали резонансный (или близкий к нему) режим, включали систему стабилизации частоты вращения ротора. Далее частота вращения (возбуждения) изменялась жестко при варьировании частоты звукового генератора, осуществлявшего стабилизацию. Затем производили точную настройку на резонанс и устанавливали путем повышения давления воздуха уровень напряжений, на котором планировалось проведение эксперимента. Наследующем этапе последовательно через один канал усилителя опрашивались все 36 датчиков. С помощью электронного вольтметра фиксировался максимальный уровень напряжений по каждому из датчиков в пределах резонансной зоны, для чего всякий раз осуществлялся очень плавный переход через резонансную зону. В процессе эксперимента давление на входе в возбудитель поддерживалось постоянным. Изменением перепада давлений на соплах, вызываемым изменением частот вращения ротора, пренебрегали, поскольку вся резонансная зона укладывалась в очень узкий диапазон частот вращения.  [c.180]

Измерение температурного поля производилось с помощью автоматического электронного потенциометра ЭПП-09-ЗЛ1 класса точности 0,5. Расчетный тепловой поток определялся с помощью астатических амперметра и вольтметра классов точности соответственно 0,2 п 0,5. Питание нагревателя сферической формы осуществлялось предварительно стабилизированным электрическим тОком.  [c.134]

Изображенный на, рис. 4, в калориметр служит для измерения истинной теплоемкости металлов. Его схема и режим работы заметно отличаются от рассмотренных выше. В зависимости от ассортимента материала испытуемый образец в таком с-калориметре может изготавливаться в виде стержня с продольной канавкой (для термопары), трубки постоянного сечения, согнутой в трубку ленты или же в виде показанной на рис. 4,6 проволочной спирали 1. К средней зоне образца привариваются или чеканятся два потенциальных провода 2, а к центральному участку -- термопара 3. Диаметры электродов термопары и потенциальных проводов выбираются такими, чтобы их теплоемкость оказалась пренебрежимо малой по сравнению с теплоемкостью образца. Электроды термопары для снижения погрешности ее показаний пропускаются внутри спирали (трубки, стержня). Во избежание провисания спираль навешивается на тонкую керамическую трубку. После монтажа термопары и потенциальных проводов образец помещается в вакуумную камеру, из которой предварительно удаляется печь, и своими концами подключается к ее токоподводящим шинам. Концы термопары подключаются к гнездам находящегося в установке (см. рис. 3) электронного потенциометра ЭПП-09, а потенциальные провода — к вольтметру или же соответствующим гнездам ваттметра. В цепь питания образца соответственно включается амперметр или ваттметр.  [c.8]

Падение напряжения на рабочей трубке измерялось электронным ламповым вольтметром ВКС-7Б, обладающим высокоомным входом. Длина экспериментального участка между контактами снятия напряжения менялась в пределах 20—80 мм (рис. 2).  [c.129]

Для измерения напряжений в маломощных Электрических цепях применяются электронные (ламповые) милливольтметры и вольтметры. Высокоточные ( 0,05%) измерения обеспечиваются цифровыми вольтметрами (В2-8, В7-8).  [c.522]

Частота вращения замеряется индукционными и фотоэлектрическими тахометрами. Наибольшее распространение получили индукционные тахометр , обладающие высокой точностью измерений и надежностью при длительной эксплуатации. В качестве датчика в индукционном тахометре используется вращающийся ротор миниатюрного генератора переменного тока, запись сигнала производится специальными вольтметрами иди электронными частотомерами.  [c.189]

В качестве образцового средства измерений используют встроенный образцовый измерительный вибропреобразователь с образцовым электронным вольтметром. На низких частотах в схему вводят согласующий усилитель, обладающий необходимым входным сопротивлением (в Ом)  [c.304]

Автоматизация регистрации резонансных кривых, например резонансного пика амплитудно-частотной зависимости, заключается в следующем. Сигнал от датчика 2 колебаний исследуемой системы 1 (рис. 11.8.10) после усилителя 3 поступает на дополнительный усилитель 4 и электронный вольтметр-выпрямитель 5, где он дополнительно усиливается и преобразуется в постоянное напряжение, которое подается на вход электронного потенциометра 6 типа ЭПП-09, двигатель которого перемещает каретку с пером на величину, пропорциональную поступившему сигналу. Для синхронизации перемещения диаграммной ленты электронного потенциометра с изменением частоты возбуждения колебаний образца привод оси потенциометра расстойки генератора звуковых частот 9 типа ГЗ-34, используемого в электромагнитной системе возбуждения коле-  [c.323]

Электронные вольтметры для измерения амплитуд реагируют на максимальные значения. Индукционные приборы реагируют на действующее значение переменной составляющей.  [c.95]

Волокно капроновое 153, 156 Вольт 439 Вольтампер 439 Вольтметр электронный 31 Вольт-фарадей 443 Вольфрам 73 Воронка 324, 325  [c.457]

Сила тока на выходе ФЭУ может быгь усилена обычными радиотехническими методами. После )roio фототок фиксируется тем или иным способом. Часто используют электронные потенциометры, проводящие непрерывную запись сигнала. В последние годы для этих целей широко применяют цифровые вольтметры и другие более сложные устройства, позволяющие так регистрировать сигнал, чтобы результаты измерений сразу могли быть обработаны электронно-вычислительной машиной. Существуют методы, позволяющие измерять с помощью Ф ЭУ очень малые световые потоки (метод счета фотонов и др.).  [c.439]


В процессе проведения эксперимента к цифровому вольтметру через аналоговый коммутатор подключаются датчики давления, тока электронного пучка и интенсивности излучения, возбуждаемого электронным пучком. Аппаратура работает в двух режимах первый — определение тарировочной зависимости излучения от плотности газа второй — получение зависимости интенсивности излучения от координаты с последующим пересчетом в профиль изменения плотности газа. Программное обеспечние комплекса включает две основные программы тарировка и эксперимент .  [c.354]

Проведение эксперимента на модели. Решающая схема (рис. 5.5) представлена на демонстрационной панели лабораторного стенда. В узлах схемы установлены электрические гнезда, с которых снимаются значения выходных величин решающих элементов схемы. Для регистрации решения используются электронно-лучевой индикатор (ИЭЛ) И-б я цифровой вольтметр типа Щ1312. Порядок подключения этих приборов к схеме указан ниже. На схеме и демонстрационной панели показаны два функциональных преобразователя, реализующих зависимости i(t) для АЬОз и 2гОг. Включение их в схему осуществляется одновременным переводом тумблеров 5 и б соответственно в верхнее (для АЬОз) или нижнее (для ZrOj) положение.  [c.212]

Электронные приборы находят все большее применение при измерении больших сопротивлений. Они позволяют измерять сопротивления до 10 Ом. Погрешность измерения сопротивлений до тысячи мегаом составляет 1,5—2,5%, с возрастанием сопротивлений она увеличивается до 10—20%. Принцип действия простейших электронных мегаомметров и тераомметров заключается в том, что вольтметром измеряется напряжение, снимаемое с делителя, состоящего из измеряемого сопротивления и известного сопротивления (рис. 2-8, а). Таким образом, прибор должен состоять из входного делителя напряжения, электронного вольтметра (ЭВ) и источника питания. При напряжении питания. Од напряжение, измеряемое вольтметром, будет равно  [c.44]

Число строк развертки примененной телевизионной системы составляет 625, вид развертки — прогрессивный с частотой кадров 50 кадр/с, скорость измерения площади и линейных размеров объектов до 20 измерений/мин электронная система прибора обеспечивает распределение объектов наблюдения по восьми градациям яркости от белого до черного (по стандартной испытательной таблице 0249). Применение цифрового вольтметра Ф210 обеспечивает автоматическую передачу результатов измерения на стандартное цифропечатающее устройство. При разработке прибора  [c.12]

Прибор состоит из следующих основных узлов телевизионной камеры с передающей трубкой (видиконом), блока управления с органами настройки и блока фиксирования результатов, снабженного видеоконтрольным устройством на телевизионной трубке 16ЛК1Б, обеспечивающей электронное увеличение в 7 раз, и цифровым вольтметром Ф210-0,5/0,2. Число строк развертки телевизионной системы составляет 625, вид развертки — прогрессивный с частотой кадров 50 кад/с, скорость измерения площади или линейных размеров при ручном измерении — до 20 измерений в минуту. Электронная система прибора обеспечивает распределение объектов наблюдения по восьми тонам от белого до черного (по стандартной испытательной таблице телевизионного стандарта 029). Наибольшая величина погрешности измеряемой величины находится в пределах 10—15%. Повторяемость резуль-290 татов измерения одного и того же объекта составляет 85%.  [c.290]

Электронная (аналоговая) система регулирования включает панель управления агрегатами гидравлической системы (МНС, гидравлических блоков), аналоговые регуляторы мод. 406.11 и 450, оснащенные нормирующими преобразователями постоянного (для динамометров) и переменного (для датчиков хода поршня) тока, блок защиты по перегрузке, селектор обратной связи. Регулятор мод. 406.11 широко используют в испытательных системах фирмы MTS, в частности, для простых испытательных машин ерии 812. Регулятор мод. 450 исйользуют в основном в мало- и многоканальных системах. В этом регуляторе дополнительно предусмотрены модули оперативного контроля с помощью цифрового вольтметра.  [c.58]

Измерение изоляции проводится мего-метрами с рабочим напряжением не ниже 1С0 в. Мощность определяется ваттметром с применением необходимых трансформаторов тока и добавочных сопротивлений. Температура обмоток замеряется с помощью заложенных в них термопар. Измерение напряжения и токов допустимо производить вольтметрами и амперметрами с точностью 2—50/q. При наличии в схеме электронных ламп измерение режима их работы может производиться вольтметром, имеющим сопротивление не менее 1000 ом на 1 в.  [c.669]

Тангенциальная сила возбуждения прикладывалась с помощью электродинамического вибратора 5 в центре тяжести стержня, лежащем в контактной плоскости, и контролировалась пьезодатчиком силы 4. Вибратор питался от синтезатора частоты, поддерживающего частоту колебаний с точностью до 0,01 Гц. Перемещения в контакте определялись но разности ускорений контактирующих деталей, измеренных с помощью пьезоакселерометра. Сигналы с датчиков ускорения и силы подавались на фильтры, имеющие ширину полосы 3,16 Гц, и электронные вольтметры. Сдвиг фазы между этими сигналами измерялся с помощью прецизионного фазометра и контролировался по фигуре Лиссажу на экране катодного осциллографа. Вклад потерь на высших гармониках в общие  [c.76]

При контроле электронной схемы периодически проверяются величины выходных сигналов по каскадам. Непременным условием правильности работы является то, что при подаче на вход усилителя сигнала 16 лв на вольтметре 9 должно быть 8—10 б, а величина помехи при короткозамкнутом входе не должна превышать 10—20 ж (т. е. на катоде катодного повторителя 6Н2П).  [c.368]

Прибор имеет настольное оформление. Внутри его корпуса, на двух выдвижных панелях, смонтированы узлы электроизмерительной схемы, регулятор напряжения питания нагревателя и распределительная система водяного охлаждения. На лицевую панель прибора вынесены рукоятки управления, кнопки включения и выключения прибора, тумблер включения нагревателя, переключатели масштаба записи сигналов термопар и режима работы, контрольный манометр системы охлаждения и контрольные амперметр и вольтметр нагревательной цепи. В комплект прибора входит шеститочечный электронный потенциометр типа ЭПП-09.  [c.63]

Входной сигнал определяют путем многократного измерения электронным вольтметром действующего илн амплнт>дного выходного напряжения преобразователя. Коэффициент преобразования находят по одному из двух соо1нон ений.  [c.305]

Состав измерительной и регистрирующей аппаратуры зависит от сложности конструкции, используемого метода, точности определения динамических характеристик. В простых случаях можно ограничиться набором датчиков с усилителями и шлейфовыми осциллографами. При частотных испытаниях наибольшее расттространение получили датчики ускорений. Для повышения эффективности измерения амплитуд и фаз используют электронные вольтметры и фазометры, а также печатающие устройства. При испытаниях сложных конструкций применяют многоканальные вибрационные комплексы, включающие ЭВМ.  [c.379]


Решение. В качестве альтернативных СИ рассмотрим электронный автоматический самопишуший потенциометр класса 0,5 (время прохода регистратором всей шкалы составляет 0,5 с) и цифровой вольтметр класса 0,2/0,1 Ф 203 с перфоратором ПЛ-150, регистрирующий данные измерений с частотой 5 отсчетов в секунду. Стоимость аналогового регистратора ниже стоимости цифрового.  [c.212]

При измерении напряжения гармонических электрических колебаний U(,t) = = /lsin(u)r + электронным стрелочным вольтметром, градуированным в эффективных значениях напряжения, стрелка вольтметра из-за наличия помех равномерно колеблется между значениями а, н а .  [c.60]

Поверка электронных вольтметров возможна методом сличения показаний, с вольтметрами электромагнишой, электродинамической и других систем достаточной точности с использованием на пределах измерения ниже 1 В точного омического  [c.129]


Смотреть страницы где упоминается термин Вольтметр электронный : [c.322]    [c.83]    [c.133]    [c.251]    [c.70]    [c.351]   
Справочник по электротехническим материалам (1959) -- [ c.31 ]

Карманный справочник инженера-метролога (2002) -- [ c.214 ]



ПОИСК



Вольтметры электронные Преимущества

Вольтметры электронные — Преимущества 1.171 — Применение

Электронные вольтметры и осциллографы



© 2025 Mash-xxl.info Реклама на сайте