Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна армирующие, свойства

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]


При соединении труб из термопластов и других деталей из изотропных материалов способ формования резьбы не оказывает существенного влияния на прочность соединения. При этом приходится соблюдать некоторые общие правила, справедливые и для формования других деталей из термопластов избегать острых кромок у витков резьбы, применять скругления и т. п. [54]. В деталях из слоистых пластиков резьбу рекомендуется выполнять так, чтобы волокна армирующего наполнителя располагались перпендикулярно к направлению действующей нагрузки. При нарезке резьбы в таких деталях (трубах и оболочках) слои наполнителя оказываются перерезанными, и прочность резьбового соединения определяется не столько механическими свойствами пластика, сколько прочностью матрицы при сдвиге (равной приблизительно 5-10 МПа) [22, с. 72 107]. Наибольшая прочность резьбовых соединений достигается в тех случаях, когда волокна наполнителя повторяют рисунок профиля резьбы. При этом разрушающее напряжение материала при сдвиге, а следовательно, и несущая способность резьбы повышаются в 3-4 раза [22, с. 72]. Резьбы такого типа создают формованием различными методами.  [c.302]

Винты — Фиксирование 169 Вкладыши подшипников 120 — Расчет размеров 123 Волокна армирующие 131 Волокнит древесный коротковолокнистый — Применение 35, 137, 138 — Свойства 18 Выступы 81  [c.210]

Если армирующие волокна во всех трех направлениях имеют одинаковые упругие свойства, т. е. гп1 — т, то из (5.59) имеем  [c.136]

Армирующие волокна. В процессе создания углеродной матрицы на этапе графитизации углеродные волокна подвержены длительному воздействию режима термообработки, который приводит к некоторым изменениям их кристаллической структуры. Степень изменения последней зависит от свойств волокон [109]. Подтверждением этому служат опыты, проведенные на волокнах Торнел 25 ( = 172 ГПа) и Торнел 40 ( = = 276 ГПа) в инертной атмосфере в течение 10 ч при 2600 °С. В ходе опытов обнаружено существенное повышение степени графитизации волокон — изменение среднего размера кристаллита или высоты пакета параллельно кристаллографической оси. Для волокон Торнел 25 размер кристаллита возрос в 2 раза, а для Торнел 40 в 1,5 раза. Для низкомодульных волокон повышение степени графитизации при длительном воздействии высоких температур было подтверждено повторными опытами. Волокна с более высоким модулем упругости (Торнел 50), выдержанные в течение 24 ч при температуре 2750 С, не проявили явных изменений в структуре.  [c.181]


Композиционные материалы. Представление о влиянии этапов графитизации и числа циклов уплотнения на формирование свойств композиционных материалов дает табл. 6.14. Исследования выполнены на ортогонально-армированных материалах с распределением волокон в направлении осей х,у, гв соотношении 1 1 2. В качестве арматуры были использованы высокопрочные (2,38 ГПа) и высокомодульные (517 ГПа) волокна Торнел 75 (плотность армирующего каркаса составляла 0,75 г/см ). Исходной матрицей служила фенольная смола. Технологический процесс изготовления композиционного материала  [c.181]

Прогресс в области технологии производства синтетических волокон с модифицированными свойствами достиг такого уровня, при котором оказалось возможным получение армирующих материалов, способных конкурировать с неорганическими волокнами.  [c.46]

Для того чтобы пластики можно было использовать в качестве конструкционных материалов, их необходимо армировать с целью увеличения их прочности и модуля упругости. Как правило, это достигается введением в состав материала высокопрочных волокон, при этом волокна и пластичная матрица образуют в совокупности композиционный материал, свойства которого превосходят  [c.261]

Дополнительные проблемы при оценке предельных свойств композитов появляются в связи с такими особенностями этих материалов, как неупругость поведения компонент, анизотропия армирующих волокон, разброс прочности компонент, наличие третьей фазы в виде пограничного слоя матрицы вблизи поверхности волокна. Следует учитывать также и специфику их применения — в авиационных конструкциях требуется нечувствительность к локальным разрушениям, в судостроении — стойкость к коррозии и кавитации, в возвращаемых космических кораблях—сопротивление абляции и уносу массы.  [c.38]

Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом.  [c.129]

Структура, взаимодействие компонентов и механические свойства композиционных материалов в значительной мере зависят от методов и режимов их изготовления [54]. Так, например, ири изготовлении композиции по режимам, характеризующимся отклонением параметров процесса от оптимальных в сторону снижения температуры, давления и сокращения времени выдержки, реализуется лишь начальная стадия физико-химического взаимодействия компонентов механизм разрушения полученного композиционного материала определяется в этом случае прочностью связи матрицы с волокном. Материал ири нагружении разрушается за счет накопления трещин на границе матрица—волокно и последующего раздельного разрыва частично связанного пучка армирующих волокон и матрицы. Разрыв какого-либо волокна приводит обычно к отслоению его от матрицы, вследствие чего в процессе дальнейших испытаний данное волокно не несет нагрузки. При таком механизме матрица разрушается с образованием воронок вокруг индивидуальных волокон или их комплексов зона разрушения матрицы обычно локализована в плоскости, перпендикулярной к направлению нагрузки волокна выдернуты из матрицы на значительную длину, область разрывов отдельных волокон распределена вдоль оси образца. Такой материал характеризуется высокой ударной вязкостью, сравнительно невысокой прочностью ири растяжении, низкими значениями циклической прочности, прочности при сдвиге, сжатии, изгибе, кручении и т. д.  [c.10]

Как известно, прочность и жаропрочность легированных сплавов, из которых изготовляют армирующие волокна (проволока), выше, чем указанные свойства нелегированных металлов. Свойства применяемых и новых армирующих материалов приведены в табл. 4 и 5.  [c.44]


КОМПОЗИЦИОННЫХ материалов и деталей из них. Кроме того, позволяет сочетать в одном полуфабрикате армирующие волокна различного состава, что расширяет спектр свойств конструируемых материалов и изделий из них.  [c.46]

Перечень сфер применения керамики чистых окислов весьма велик. Можно с уверенностью сказать, ЧТО область ее использования будет непрерывно расширяться. Век космоса предъявляет к керамике новые требования высоких пределов прочности при растяжении, повышенной ударной вязкости, хорошей термостойкости. Улучшить свойства керамики можно, армируя ее металлическими волокнам и. Большое значение при этом имеет геометрия волокон и их ориентация.  [c.61]

Исключительное положение среди конструкционных пластмасс занимают анизотропные материалы, содержащие армирующие элементы, расположенные с различной закономерностью. Эти элементы (бумага, хлопчатобумажные и вискозные ткани, стеклянные рогожки и ткани, асбестовые ткани, стеклянные волокна и т. д.) придают конечному материалу специфические свойства. От остальных пластмасс анизотропные армированные пластики отличаются не только тем, что их свойства не одинаковы во всех направлениях, но и тем, что их свойства предопределяются сочетанием высокоэластического поведения связующего вещества и почти идеально упругого поведения армирующих элементов.  [c.43]

Для целого ряда отраслей эффективным является применение разнообразных композиционных материалов, и в частности композитов, имеющих полимерную матрицу и армирующие непрерывные углеродные, стеклянные, борные или органические волокна. В этом случае достигается не только снижение веса и повышение долговечности элементов конструкций, но и обеспечивается ряд специальных свойств.  [c.16]

Поступающий на завод армирующий компонент, например, товарный асбест, представляет собой распушенное на обогатительных фабриках волокно. Однако в нем содержатся довольно большие агрегаты волокон, которые могут привести к неоднородности ФПМ и снизить степень его армирования, что неблагоприятно отразится на свойствах изделий. Поэтому, в частности, для бо ее тонкого расщепления  [c.172]

Надлежащий выбор системы координат позволяет существенно упростить исходные матрицы податливости и жесткости, если материал обладает симметрией упругих свойств. Рассмотрим, например, композиционный материал, состоящий из упругого связующего, регулярно армированного в одном направлении упругими волокнами (рис. 1.2). Для описания деформационных свойств такого материала можно воспользоваться моделью однородного анизотропного упругого тела. В произвольно ориентированной системе координат матрица податливости (и жесткости) будет целиком заполненной, а число подлежащих определению независимых коэффициентов не ясным. В системе координат (Xi, х , х ) плоскость (х , Xs) можно считать плоскостью упругой симметрии матрица коэффициентов податливости в этом случае будет иметь структуру (1.11). Еще более полно симметрия упругих свойств рассматриваемого материала выявляется в системе координат (х1, хг, Xj) плоскость х, Хг) тоже можно считать плоскостью упругой симметрии. Следовательно, теперь все координатные плоскости — плоскости упругой симметрии, материал является ортотропным и матрица коэффициентов податливости имеет структуру (1.12). Более того, при равномерном распределении армирующих волокон допустимо считать, что упругие свойства во всех направлениях в плоскости (x l, Хз) идентичны. Теперь становится ясным, что рассматриваемый материал является трансверсально изотропным, матрицы его коэффициентов податливости имеют вид  [c.13]

Прочность КОМПОЗИЦИОННЫХ (волокнистых) материалов определяется свойствами волокон матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.  [c.424]

ОДНОГО И ТОГО же материала можно говорить не о постоянной характеристике, а о ее статистическом распределении. Если модуль упругости и предел текучести меняются в узких пределах и расчет по средним значениям достаточно достоверен, то прочность хрупких материалов и их структурных составляющих должна рассматриваться как случайная величина и отвлечься от ее статистического характера принципиально невозможно. Именно статистическая теория позволяет объяснить и оценить количественно так называемый масштабный эффект прочность большого изделия всегда оказывается меньше, чем прочность малой его модели (после пропорционального перерасчета, конечно). Изложение современных статистических теорий прочности заняло бы слишком много места, однако некоторые сведения нам представлялось необходимым сообщить. Эти сведения особенно существенны для понимания природы прочности современных композитных материалов, состоящих из полимерной или металлической матрицы, армированной угольным, борным илп иным высокопрочным волокном. Разброс свойств армирующих волокон довольно велик и для нопимания того, в какой мере эти свойства могут быть реализованы в композите, необходимо некоторое представление о статистической природе его прочности. Именно поэтому изложение элементов статистической теории будет дано ниже, в гл. 20.  [c.654]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]


В заключение запишем уравнения закона Гука для ортотроппого материала. В последнее время широкое распространение получили так называемые композитные материалы, состоящие, например, из полимерной основы, армируемой волокнами из высокопрочного материала. Упругие свойства такого композитного материала зависят от плотности насыщения и ориентации в пространстве армирующих волокон. В общем случае такой материал рассматривается как анизотропный. В частном случае, когда армирующие волокна расположены в трех взаимно ортогональных направлениях, упругие свойства будут симметричны относительно трех ортогональных плоскостей.  [c.39]

Анизотропия кристаллов объясняется их атомной структурой, но существуют материалы, у которых определяющие их анизотропию структурные элементы имеют значительно большие размеры. Примером может служить древесина, расположение видимых невооруженным глазом волокон создает относительно высокую прочность в направлении оси ствола и малую прочность в поперечном направлении. В этом отношении можно сказать, что природа распорядилась прочностью целлюлозы, из которой, в основном, состоит древесина, наилучншм образом. По этому принципу в технике создают так называемые композитные материалы, примером которых могут служить стеклопластики. Тонкая стеклянная нить имеет высокую прочность, укладывая слои такой нити, пропитывая их смолой и полимеризируя, получают монолитные пластины. Чередуя направления укладки слоев, можно менять степень и характер анизотропии с тем, чтобы использовать прочность волокна наивыгоднейпшм образом. В последние годы были получены и промышленно освоены высокопрочные волокна, значительно превосходящие по своим свойствам стеклянное волокно и, что особенно важно, имеющие значительно более высокий модуль упругости. Наибольшее распространение получили волокна бора и углерода, которыми армируют пластики и металлы.  [c.41]

В качестве арматуры пространственно-армированных композиционных, материалов используют как стекловолокно, жесткость которого сравнительно невелика, так н высокомодульные углеродные волокна. Наибольшее распространение углеродные волокна получили при создании трехмерноар-мированных материалов типа углерод-углерод [90, 91, 110, 111, 116, 123, 124, 125]. В настоящее время уже испытываются многомерные схемы армирования. Созданы и анализируются системы, имеющие пять и более направлений армирования. При равномерном расположении армирующих волокон по диагоналям куба (система четырех нитей) удается получить ква-зиизотропный материал, а изменяя соотношение арматуры в разных направлениях, можно создать материалы с заданными свойствами.  [c.10]

Композиционные материалы на основе системы двух нитей целесообразно изготовлять из различных по механическим свойствам армирующих волокон. Высокомодульнь]е углеродные или борные волокна могут быть расположены в направлении утка и частично в направлении основы. Арматуру, искривленную в направлении основы, изготовляют из стекловолокна. При таком комбинировании разных волокон можно значительно повысить жесткость и прочность в направлении основы и утка без заметного снижения прочности на отрыв в трансверсальном направлении и сопротивляемости сдвигу. Хороший эффект в повышении монолитности и надежности таких структур достигается также за счет модифицирования волокон 34].  [c.12]

Нитевидные кристаллы имеют весьма короткие волокна, при этом соотношения длины и диаметра достаточно высоки. Это очень важно при использовании нитевидных кристаллов ( усов ) в качестве армирующего материала. Усы обладают высокой удельт ной прочностью и жесткостью. Их можно вальцевать, разрезать, обрабатывать без заметного снижения прочностных свойств. Существенным недостатком нового класса армирующих материалов — нитевидных кристаллов — является неприемлемость для них обычной технологии изготовления. Вискеризованные материалы требуют создания новой технологии в целях использования всех потенциальных возможностей вискернзации. Технология переработки материалов с вискери-зированными волокнами изложена в работе [102].  [c.19]

Феноменологическое исследование механических свойств композиционных материалов может быть проведено двумя путями. Первый основан на рассмотрении армирующего материала как конструкции и учитывает реальную структуру композиции. В этом случае задача состоит в установлении зависимостей между усредненными напряжениями и деформациями. Второй путь основан на рассмотрении армированных материалов как квазноднородных сред и использовании традиционных для механики твердых деформируемых тел средств и методов их описания. Краткая схема аналитического расчета упругих констант композиционного материала методом разложения тензоров жесткости и податливости в ряд по объемным коэффициентам армирования приведена в монографии [60, 83]. Установлено, что при малом содержании арматуры можно ограничиться решением задачи для отдельного волокна, находящегося в бесконечной по объему матрице. Однако такой подход заведомо приводит к грубым погрешностям при расчете упругих характеристик пространственно армированных материалов, объем которых заполнен арматурой на 40—70 %. К тому же следует учесть, что пространственное расположение волокон в этих материалах приводит к росту трудностей при решении задачи теории упругости по определению напряженно-деформированного состояния в многосвязанной области матрица—волокно. Коэффициент армирования при этом входит в расчетные выражения нелинейно, что приводит к очередным трудностям реализации метода разложения упругих констант материала по концентрациям его компонентов.  [c.55]

Влияние типа армирующих волокон и схем армирования на формирование свойств. Для изготовления пространственно-армированных углерод-угле-родных композиционных материалов применяют армирующие волокна различных видов (нити, жгуты, стержни и т. д.) с различными физикомеханическими свойствами. Кроме того, армирующие каркасы, имеющие одну и ту же структурную схему, могут быть созданы различными методами (см. с. 168), что оказывает определенное влияние на свойства материала. О влиянии типа волокон на формирование свойств композиционного материала свидетельствуют данные (рис. 6.8), полученные из опытов на изгиб образцов, вырезанных из материала в направлении г [111]. Армирующий каркас был создан прошивкой в направлении 2 пакета, набранного из слоев низкомодульной графитовой ткани. Для прошивки использовали как обычные непропитан-ные углеродные жгуты и нити с различной площадью поперечного сечения, так и предварительно пропитанные и отвержденные (в виде стержней) нити. При изготовлении материалов изменялись только содержание и тип волокон направления z в двух других направлениях параметры армирования сохранялись постоянными.  [c.172]

Примером безмоментных оболочек являются сосуды, изготовленные методом намотки. Расчет таких конструкций основан на нитяной модели материала, согласно которой внутреннее давление и силы, приложенные по краям оболочки, воспринимаются армирующими волокнами и вызывают в них только растягивающие напряжения. Такие конструкции и методы их расчета рассмотрены в работах Рида [67], Росато и Грове [6в], Шульца [75]. Современные методы расчета сосудов давления и корпусов двигателей изготовленных методом намотки [24, 42], учитывают изгиб оболочки, вызванный соответствующим характером нагружения, а также несимметрией распределения геометрических параметров или упругих свойств материала по толщине. Изгиб-ные напряжения, предсказываемые в этом случае теорией малых деформаций, могут оказаться значительными. Однако рассматриваемые оболочки обычно деформируются таким образом, что в процессе нагружения остаются безмоментными. На безмоментной теории, предусматривающей большие деформации системы, основан метод определения равновесных форм армированных оболочек. Обзор исследований, посвященных оптимизации безмоментных оболочек из композиционных материалов, приведен в работе Ву [901.  [c.148]


Книга посвящена рассмотрению результатов изучения поверхности раздела упрочнитель — полимерная матрица в композиционных материалах волокнистого строения. В ней подробно обсуждаются проблемы, которые были только затронуты в книге Современные композиционные материалы . Среди них такие, как химия поверхности армирующих волокон, природа связи на поверхности раздела, роль различных обработок поверхности волокон (в основном силановыми аппретами) в формировании границы раздела полимер — минеральные волокна, механизм передачи напряжений через поверхность раздела, влияние начальных термических напряжений на механические свойства композитов, стабильность композитов при воздействии влаги.  [c.5]

Электронно-микроскопическим методом при большом увеличении изучались реплики, снятые с поверхности стекловолокон, обработанных силановым аппретом. Было установлено, что оптимальными свойствами обладают однонаправленные композиты, которые армированы стекловолокнами, обработанными 0,1—0,25%-ным раствором силановых аппретов, в то время как для образования мономолекулярного слоя требуется всего лишь 0,02—0,04% силана. На электронной микрофотографии стекловолокна, обработанного о, 1%)-ным водным раствором силана, можно видеть большое количество гидролизованного силана в матрице между волокнами (рис. 2). Промывание стекловолокон горячей водой приводит к разрушению большей части силановых мостиков, не ухудшая свойств композитов, армированных таким стекловолокном. Отсюда следует, что для прочной связи волокна с полимером достаточно наличия на стеклянной поверхнасти мономолекулярного слоя аппрета. На практике обычно используются силаны более высокой концентрации с учетом неоднородного осаждения их на пряди (пучке) волокон. Видимые островки аппрета, осевшего на поверхности стекловолокна, незначительны, что подтверждается результатами электронно-микроскопичеокого исследования реплик. Даже при самом большом увеличении на стекловолокне нельзя обнаружить монослоя аппрета. В работе [47] было показано, что осаждение равномерно деформируемого пластичного слоя силиконового полимера на поверхности раздела зависит от природы силанов.  [c.18]

Еще более усложняет изучение проблем, связанных с разрушением, разнообразие материалов арматуры и матрицы, которые позволяют создавать композиты с любыми необходимыми свойствами. Наиболее распространены следующие типы армирующих волокон. Волокна Е- и S-стекля—низкомодульные, умеренно прочные при растяжении и сжатии с большими предельными деформациями. Волокна бора — высокомодульные, высокопрочные при растяжении и сжатии. Углеволокна могут сочетать различные свойства — высокую прочность и низкий модуль упругости или низкую прочность и высокий модуль. Органоволокна (Кевлар-49) — высокомодульные, высокопрочные при растяжении, весьма низкопрочные при сжатии. Волокна FP ) —высокомодульные, высокопрочные при сжатии, довольно низкопрочные при растяжении. В качестве связующего (матрицы) используются, как правило, синтетические смолы (термореактивные и термопластичные), графит и сплавы алюминия.  [c.38]

Волокна определяют уровень прочностных свойств композиционных материалов при условии их совместимости с матрицей. Напряжения, возникающие в колгаозиции при нагружении, воспринимаются в основном армирующими волокнами, которые придают композиции прочность и жесткость в направлении ориентации волокон.  [c.33]

Волокна бора и карбида кремния применяют в качестве армирующих компонентов композиционных материалов с алюминиевой, магниевой и титановой матрицами. В случае нагрева выше 500° С волокон бора с алюминиевой матрицей (при изготовлении композиции) имеет место химическое взаимодействие с образованием фазы AlBj. Активное взаимодействие приводит к снижению свойств волокна и к падению прочности композиционного материала в целом. Это вызывает необходимость нанесения на борные волокна тонкого слоя покрытия (3—5 мкм). Такими покрытиями, защищающими волокна от взаимодействия с матрицей, являются карбиды кремния и бора, нитриды титана, бора и кремния и др.  [c.36]

Свойства волокнистых композиционных материалов, особенно их механические свойства, при одном и том же содержании упроч-нителя, сильно зависят от ориентации волокон в матрице и от угла между направлением действия приложенной нагрузки и ориентацией волокон [77 ]. Примером тому являются приведенные на рис. 80 кривые изменения предела прочности в зависимости от направления приложения нагрузки материала алюминий — 50 об. % борного волокна с тремя схемами укладки армирующих волокон и на рис. 81 кривые изменения модуля упругости и модуля сдвига одноосноармированного материала алюминий — 50 об. % борного волокна [10,30]. Значения предела прочности, модуля упругости и удлинения композиционного материала на основе алюминиевого сплава 6061, упрочненного волокнами бора и борсик, с различными типами укладки волокон, приведены в табл. 44, 45. Представленные на рис. 80, 81 и в табл. 44 и 45 данные свидетельствуют о широких возможностях изменения свойств композиционного материала в зависимости от типа укладки армирующих волокон при одном и том же их общем содержании. Это позволяет с максимальной степенью реализовать прочностные свойства композиционного материала в детали, сконструированной таким образом, что количество и направление укладки волокон учитывают ее напряженное состояние. Приведенные в табл. 45 данные позволяют также получить представление о прочностных свойствах при сжатии композиций алюминий — бор. 206  [c.206]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

Однонаправленные структуры получают укладкой первичного армирующего материала (волокна, нити, жгута, шпона, ленты) в одинаковых направлениях в каждом слое. Примером изделий на основе ОС может служить листовой однонаправленный СВАМ, бондажные кольца, кольцевые шпангоуты, полученные намоткой на оправку элементарного волокна, нити или жгуты, профильные изделия, полученные протяжкой (стержни, уголки, тавры, швеллеры и т. д.). К материалам, имеющим ОС, можно отнести древесину и материалы на основе облагороженной древесины (фанера, древеснослоистый пластик и др.). Отличительной особенностью их является максимальная прочность вдоль направления волокна и минимальная — в перпендикулярном направлении, в котором прочность определяется адгезионными свойствами связующего.  [c.7]

В табл. 3 приведены типичные свойства высокомодульных волокон, которыми армируют пластики для низких температур. Kevlar 49 является разновидностью арамидно-го волокна производства Е. I. Du Pont orporation , часто используемого в композитах на органической основе. Это волокно по сравнению со стеклом обладает повышенным модулем упругости при относительно низкой стоимости. Недостатками этих материалов является сравнительно низкая прочность при сжатии, пониженная поперечная прочность и очень большое отрицательное значение коэффициента линейного расширения в продольном направлении.  [c.74]

Большой интерес представляют комбинированные наполнители, состоящие из указанных выще наполнителей, взятых в различных соотношениях и позволяющие улучшить комплекс свойств наполненных фторопластов. Износостойкость наполненных фторопластов увеличивается более чем в 500 раз, теплопроводность в 5—10 раз, сопротивление деформации при сжатии в 3—4 раза, твердость на 10% и т. д. При выборе наполнителей необходимо учитывать условия эксплуатации наполненных фторопластов для целей химического машиностроения целесообразно применять графит, стеклопорошок и волокно, ситалл, керамику, асбест для электроизоляционных деталей — слюду, кварцевый порошок, стеклочешуйки, стеклопленку для пар трения, работающих без смазки,— графит, дисульфид молибдена в сочетании с армирующими наполнителями (волокнистыми наполнителями).  [c.181]

Описание механических свойств композитных материалов, которые могут обладать весьма высокой прочностью (особенно статической и ударной), можно производить двумя путями. В первом случае композитные материалы рассматриваются как квазиодно-родные (гомогенные), обладающие в случае объемного дисперсного армирования изотропией деформационных и прочностных свойств, а в случае армирования волокнами, плоскими сетками или тканями — определенного типа анизотропией. Обычно применяют модели ортотропного или трансверсально-изотропного тела. При таком подходе речь идет о механических характеристиках, осред-ненных в достаточно больших объемах, содержащих много однотипных армирующих элементов. Другой, несравненно более сложный, но и более информативный путь состоит в раздельном рассмотрении механических свойств каждой фазы с последующим теоретическим прогнозированием свойств всего композита в целом. При этом приходится рассматривать фактически еще одну дополнительную фазу зоны сопряжения основных фаз, например, матрицы с армирующими волокнами. Механизм повреждений, развивающихся на границах фаз, обычно весьма сложен и определяется помимо свойств основных компонентов гетерогенной системы еще рядом дополнительных факторов, таких как адгезия фаз, технологические и температурные местные напряжения, обычно возникающие вблизи границ, наличие дефектов и др. Границы фаз как зоны концентраций напряжений играют особенно важную роль в развитии много- и малоцикловых усталостных повреждений композитов.  [c.37]


Рассмотрим материал, обладающий анизотропией прочности, которая в большинстве случаев сочетается с анизотропией деформационных свойств материала. Допустим, что материал составлен из матрицы, армированной перекрестными взаимно перпендикулярными волокнами. Отнесем систему армирующих волокон к осям XYZ так, что сопротивление растяжению или сжатию элемента материала с гранями, параллельными координатным плоскостям, будет в направлении одной из осей, например ОХ, наибольшим (вследствие наибольшей плотности расположения волокон), в направлении оси 0Y — ниже (вследствие меньшей плотности), а по оси 0Z, где может совсем не быть арматуры, — наименьшим. Анизотропия такого типа называется ортогональной, а соответствующие композитные материалы, которые встречаются наиболее часто, — ортотропными. Оси XYZ называются главными осями анизотропии, которые в общем случае конечно не совпадают с главными осями напряжений. Сбпротивления сдвигу, т. е. действию касательных напряжений, в главных плоскостях анизотропии XOY, YOZ к ZOX различны, но предельные значения касательных напряжений Oij = Oji не зависят от их направления, что не имеет места в том общем случае, когда оси XYZ не являются главными осями анизотропии. Будем считать, что при испытании образцов данного материала в главных плоскостях анизотропии могут создаваться статически определимые и коя-  [c.85]

Были исследованы несмазываемые подшипниковые узлы из листовых материалов группы 36 [57]. Установлено, что модуль упругости при сжатии материалов оказывает на изнашивание более существенное влияние, чем содержание и распределение в рабочем слое ПТФЭ. На упругопрочностные свойства рабочего слоя материалов влияет тип армирующего волокна. Наименьшему изнашиванию подвержен материал с армирующими поли-имид-амидными волокнами. Применение полимерных волокон других видов привело к усилению процесса изнашивания по сравнению с изнашиванием материалов, содержащих в качестве армирующего элемента стекловолокна. Износ уменьшался с увеличением модуля упругости при сжатии.  [c.50]


Смотреть страницы где упоминается термин Волокна армирующие, свойства : [c.134]    [c.444]    [c.504]    [c.687]    [c.185]    [c.198]    [c.382]    [c.204]   
Углеродные волокна (1987) -- [ c.17 , c.18 ]



ПОИСК



Армирующие волокна —

Волокна

Волокна свойства

Волокниты Свойства



© 2025 Mash-xxl.info Реклама на сайте