Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность композиций

Рассмотрим прочностные свойства материалов, полученные на базе сапфировых усов (табл. 25). Можно видеть, что прочность композиции ниобий — сапфировые усы в 4 раза выще прочности ниобия. В той же таблице приведены данные по прочности композиции медь — вольфрамовая проволока. И в данном случае прочность получаемого материала достаточно высока.  [c.109]

Изменение других показателей спекаемости (Д// , при повышении Гдй находится в общей корреляции с характером изменения механической прочности композиций (см. рисунок, б, в) усадка образцов возрастает, открытая пористость уменьшается. Однако на участках кривых от 900 до 1100 °С эти показатели изменяются монотонно. Тем самым подтверждается, что замедление роста прочности или ее снижение в области от 1000 до 1100 °С связано с фазовыми превращениями.  [c.209]


Отверстия и вырезы. Как правило, отверстия более резко снижают статическую прочность композиций, чем металла. С другой стороны, они меньше влияют на усталостную прочность композиций. При этом на величину их прочности сильно влияет форма отверстия, как показано на рис. 5. Разрушающее напряжение для случая круглого отверстия диаметром 38 мм составляло 1610 кгс/см , а для более квадратного 2450 кгс/см [12].  [c.101]

Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5].  [c.148]

Предел прочности композиций, армированных волокнами углерода и карбида кремния в зависимости от давления при пропитке, изменяется по кривой с максимумом. Давление необходимо для обеспечения полной пропитки детали и создания минимального взаимодействия, достаточного для достижения оптимальной прочности связи волокна с матрицей. Однако слишком высокое давление пропитки приводит к значительному разупрочнению волокна и снижению свойств.  [c.9]

Прочность композиций, армированных непрерывными волокнами. В волокнистых композициях непрерывные волокна обычно распределены по всему объему. В целях упрощения предположим, что они однородны, непрерывны, ориентированы в одном направлении и прочно сцеплены с матрицей, так что при деформировании между ними отсутствует проскальзывание. Пусть к образцу из такого композиционного материала приложена осевая нагрузка Р, которая связана с напряжением соотношением  [c.15]

Существует также и нижняя граница При малой объемной доле в волокнах возникают высокие напряжения (они несут основную долю нагрузки), приводящие к их дроблению. Тогда, если деформационное упрочнение матрицы достаточно велико, чтобы восполнить потерю несущей способности разрушившихся волокон, то прочность композиции Ок будет определяться свойствами матрицы  [c.16]


Рис. 4. Зависимость прочности композиции от объемной доли хрупких волокон в пластичной матрице а) и пластичных волокон в хрупкой матрице (б) Рис. 4. Зависимость прочности композиции от <a href="/info/29145">объемной доли</a> хрупких волокон в <a href="/info/135404">пластичной матрице</a> а) и пластичных волокон в хрупкой матрице (б)
На рис. 5 показана зависимость прочности композиции от угла 0 в соответствии с указанными выше уравнениями. Существует  [c.20]

Особо необходимо остановиться на поперечной прочности композиции. Используя формулу (22) при 6 = 90°, получаем = = 0м- Однако вследствие того, что матрица в этом случае находится в стесненном состоянии, вводят поправочный коэффициент 1,15. Таким образом, в случае прочного сцепления волокон с матрицей поперечная прочность композиции Ок = 1,15о м.  [c.20]

Рис. 5. Ориентационная прочности композиции Рис. 5. Ориентационная прочности композиции
ИЗМЕНЕНИЕ НОРМИРОВАННОЙ ПРОЧНОСТИ КОМПОЗИЦИИ Ti - 25% В ПОСЛЕ ИЗОТЕРМИЧЕСКИХ ОТЖИГОВ ПРИ 870 С [50]  [c.76]

ИЗМЕИЕНИЕ ПРОЧНОСТИ КОМПОЗИЦИЙ TI - 26% БОРНОГО ВОЛОКНА С ПОКРЫТИЕМ Si (B/Si ) ПОСЛЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРИ 870° с [50]  [c.77]

Режим термической обработки Прочность волокон, извлеченных из композиции Прочность композиций  [c.84]

Процессе получения композиций и после изотермических отжигов изменяется не только средняя прочность волокон а, но и ее дисперсия S-, поэтому параметры распределения прочности, необходимые для расчета прочности композиций по статическим теориям, следует определять для волокон, извлеченных из композиции.  [c.85]

Теперь рассмотрим вопрос о влиянии силы связи между компонентами на прочность композиций в поперечном направлении. Довольно часто при растяжении поперек укладки волокон разрушение происходит в результате расщепления последних, так как их прочность в поперечном направлении меньше прочности поверхности раздела а,,, р и матрицы а . В общем случае характер разрушения при испытаниях в указанном направлении зависит от соотношения величин ст .р. Если > Оп. р,  [c.88]

Коэффициент р позволяет оценить вклад матрицы в повышение или снижение прочности пучка волокон в результате его введения в матрицу. Так, например, если матрица вносит какой-то вклад в прочность по отношению к пучку или даже если она просто принимает на себя часть нагрузки, наблюдаемый коэффициент р будет больше единицы. Если же матрица химически взаимодействует с волокнами, либо волокна ломаются в процессе изготовления материала, прочность композиции может быть ниже, чем прочность пучка волокон, в результате чего р будет меньше единицы.  [c.108]

Образцы композиционных материалов с матрицей из алюминия, легированного 12% кремния (№ 5, 10) и 35% магния (№ 6), упрочненной композиционной лентой из борного волокна, покрытого нитридом бора и пропитанного алюминием, имели малую прочность и низкий коэффициент эффективности матрицы. При этом коэффициент р образцов с алюминиевой матрицей, легированной 35% магния, имеющей более низкую температуру плавления, был несколько выше по сравнению с силуминовой матрицей. В образцах в состоянии после литья он достигал 0,75. Судя по уровню прочности этих образцов (№ б), матрица, заключенная между слоями ленты, имеющая после литья грубые дефекты, практически не несет нагрузки, и вклад в прочность композиции вносит только композиционная лента. Если учесть, что максимальная температура, действию которой подвергались волокна в процессе изготовления композиционного материала, не превышала 450°С и они были защищены от действия расплава матрицей из алюминия, входящей в состав композиционной ленты, то фактически все повреждения, которые можно было наблюдать на волокнах, являлись результатом процесса пропитки волокон расплавом при получении ленты. Это соображение подтверждается опытом по гомогенизации образцов с матрицей из алюминия с 35% магния после пропитки (партия № 7). Образцы, подвергавшиеся гомогенизации при температуре 400° С в течение 70 ч, показали прочность 70 кгс/мм , что на 15,5 кгс/мм выше прочности образцов в состоянии после литья. Повышение прочности является следствием улучшения свойств матрицы, повышения ее способности передавать напряжения от разрушенных волокон к более прочным волокнам. Гомогенизация повышает коэффициент эффективности матрицы при содержании 37 об. % волокна от 0,75 до 0,93, причем эти цифры характеризуют величину полного разрушения волокна, обусловленного всем технологическим циклом, включающим процесс нанесения покрытия из нитрида бора, получение ленты методом протяжки через расплав алюминия и процесс окончательной пропитки.  [c.111]


ПРОЧНОСТЬ композиций, ПОЛУЧЕННЫХ ПРИ РАЗНЫХ РЕЖИМАХ, кгс/мм  [c.133]

Средний уровень прочности композиций, содержащих 30— 40 об. % волокон и полученных но разным режимам, составляет 40—60 кгс/мм . При низких и умеренных температурах  [c.137]

При получении композиционных материалов на песчаном грунте листы часто имеют коробление и шероховатую поверхность. При деформировании композиционного листа на таком основании из-за значительного прогиба в материале появляются большие касательные напряжения вследствие относительного сдвига металла матрицы и волокна, обладающих разными пластичными характеристиками. Величина этих напряжений может превышать прочность связи волокна с матрицей, что иногда приводит к образованию непроваров, снижающих прочность композиции. Однако металлическая плита в качестве основания имеет и свои недостатки, так как в этом случае отраженная волна, интенсивность которой составляет более 20% интенсивности падающей ударной волны, создает на границах раздела между слоями матрицы значительные растягивающие напряжения. Это может приводить к образованию локальных дефектов, также снижающих прочность композиции. Более благоприятные условия сварки, обеспечивающие высокую прочность соединения, создаются при использовании в качестве основания плиты из материала, имеющего достаточно высокую жесткость в сочетании со сравнительно низким акустическим сопротивлением.  [c.161]

Существенное влияние на прочность композиционного материала оказывает характеристика заряда взрывчатых веществ. Для одного и того же состава взрывчатой смеси существует оптимальная высота заряда, обеспечивающая высокую прочность соединения и прочность композиции в целом.  [c.163]

Рис. 83. Изменение предела прочности композиции А1—С в зависимости от температуры Рис. 83. Изменение <a href="/info/1682">предела прочности</a> композиции А1—С в зависимости от температуры
О прочности композиции борное волокно — алюминий/И. Л. Светлов,  [c.245]

При выборе марки смолы необходимо учитывать, что механическая прочность композиции, приготовленной на основе смол ЭД-6 и Э 40 на 10—15% больше, чем композиции того же состава, приготовленные на основе смолы ЭД-5. Однако композиции на основе смолы ЭД-5 более удобны в работе, их не нужно подогревать при смешивании компонентов и они более экономичны (так как из-за низкой вязкости смолы можно ввести большее количество наполнителя). Чтобы понизить вязкость, смолы ЭД-6 и Э-40 перед смешиванием подогревают до 40—60° С. Кроме эпоксидной смолы, в состав эпоксипласта входят пластификатор, отвер-дитель и наполнитель. Количество того или иного компонента может быть различным.  [c.75]

Рассмотрим границы справедливости уравнения аддитивности относительно объемной доли V . Верхняя граница определяется чисто технологическими условиями. Максимальная плотность упаковки цилиндрических волокон приблизительно составляет 90,6%, квадратных — 100%. Однако при больших объемных наполнениях хрупких волокон экспериментально наблюдается отклонение от правила смеси. Связано это с неравномерностью укладки волокон. В работе С. Т. Милейко показано, что неравномерность укладки (например, группа из нескольких соприкасающихся волокон) может сильно понизить прочность композиции так как зародившаяся в такой группе микротрещипа (обрыв одного из волокон при напряжении, равном пределу прочности слабейшего волокна в группе) легко превращается в магистральную трещину. В связи с этим возникает вопрос об оптимальной объемной доле армирующих волокон [43].  [c.16]

В табл. И приведены результаты определения предела прочности при растяжении композиции Ti—25% борных волокон после изотермических отжигов при 870° С различной продолжительности. Для сравнительной оценки удобно пользоваться нормированной прочностью От/аао, где о — средняя прочность волокон (композиции) после отжига при температуре Т в течение времени т, а ff2o — исходная средняя прочность при комнатной температуре. Уже после 30-минутного отжига нормированная прочность композиции составляет 65% и в дальнейшем мало изменяется, несмотря на увеличение толщины слоя диборида титана с 7000 и до 100 ООО А. Деформация волокон после 30-минутного отжига составляет 0,27% и близка к деформации разрушения массивного TiBj.  [c.76]

Последствия химического взаимодействия между составляющими в композициях третьей и псевдопервой группы проявляются не только после специальных термических обработок, но и после получения их методом горячего прессования. Большинство исследователей сходится во мнении, что существуют оптимальные параметры получения этих композиций. Если два любых параметра из трех (температура, время, давление прессования) постоянны, то кривая зависимости продольной прочности композиции от третьего переменного параметра имеет максимум. Объяснение такой зависимости будет дано при обсуждении выбора оптимальной температуры прессования композиции алюминий—борное волокно. Проиллюстрируем сказанное графиком (рис. 31) зависимости прочности и деформации до разрушения от температуры прессования композиции Ti — 6% А1 — 4% V — 25% волокон B/Si . Кривые имеют пологий максимум в интервале температур 770—830° С. Снижение механических характеристик композиций, полученных прессованием при высоких температурах, объясняется химическим взаимодействием и разупрочнением волокон.  [c.78]

Существует интервал температур прессования, в котором понижение прочности борных волокон незначительно. Из сопоставления кривых на рис. 32следует,что понижение прочности композиций по мере повышения температуры прессования связано с разупрочнением волокон, которое обусловлено химическим взаимодействием. Особенно интенсивно это взаимодействие протекает при температурах выше 560° С. Пониженная прочность композиций, полученных при 480° С, обусловлена, по-видимому, недостаточно прочной связью между матрицей и волокном. Такая композиция работает как пучок параллельных волокон. Таким образом, для достижения максимальной прочности композиции в продольном направлении следует стремиться к созданию оптимальной связи слишком прочная связь, обусловленная интенсивным химическим взаимодействием, нецелесообразна, так как при этом снижается прочность волокон слабая механическая связь не обеспечивает надлежащей передачи касательных напряжений к волокнам. На поверхности вытравленных волокно бора обнаружен слой продуктов химического взаимодействия. На рис. 33 приведена серия микроструктур, полученных с помощью сканирующего микроскопа  [c.79]


Вторая причина может быть связана с улучшением связи между волокном и матрицей вследствие дополнительного химического взаимодействия в процессе термической обработки. Например, прорастание иглообразных кристаллов AlBj в матрицу безусловно способствует улучшению связи между компонентами. Ситуация подобна той, которая возникает в полимерных композициях, армированных вискеризованными углеродными волокнами. Естественно, что степень химического взаимодействия не должна превышать некоторой критической , после которой следует интенсивное разупрочнение борных волокон. Аналогичное изменение деформации до разрушения (прочности) композиций Л1 — 45% В и Л1—25% В и волокон, вытравленных из них после отжига при 500° С, было обнаружено Меткалфом и Клейном [50] (рис. 35). На первой стадии отл ига (30 мин) деформация до разрушения волокон и композиции несколько повышается, затем следует стадия значительного разупрочнения, которое стабилизируется на уровне 50% от исходной прочности. Интересно отметить, что прочность  [c.81]

Механизм разрушения композиции AI—В при испытаниях в поперечном направлении изучен Прево и Крайдером в [194, 1951. По мнению авторов, на прочность композиций в поперечном направлении оказывают влияние тип волокон, прочность связи, условия прессования композиции, прочность матрицы, остаточные напряжения. Борные волокна диаметром 140 мкм и волокна карбида кремния имеют более в >1сокую прочность в поперечном направлении по сравнению с борными волокнами диаметром 100 мкм. В связи с этим в композициях, армированных борными волокнами диаметром 140 мкм и волокнами карбида кремния, доля расщепленных волокон значительно меньше и прочность в поперечном направлении выше. Изотермические отжиги влияют на прочность в поперечном направлении в той мере, в какой они способствуют увеличению или уменьшению прочности связи на поверхности раздела.  [c.89]

ПРОЧНОСТЬ композиций НИМОКАСТ 258 — ВОЛЬФРАМОВАЯ ПРОВОЛОКА, кгс/мм [125]  [c.103]

Из табл. 23 видно, что наиболее высокую прочность (148кгс/мм ) имели образцы с матрицей из нелегированного магния. По расчету прочность сухого пучка при содержании 67 об. % волокна должна составлять 134 кгс/мм Таким образом, прочность образцов превышает прочность пучка на 10%, и в данном случае коэффициент эффективности матрицы равен 1,1. Введение в магний 9% алюминия приводит к сильной деградации волокон, и для партии образцов № 2 коэффициент р существенно меньше единицы. Однако если в эту же матрицу вводить борное волокно, предварительно покрытое слоем нелегированного магния, то, как это видно по результатам испытания партии кольцевых образцов № 8, коэффициент эффективности матрицы может быть значительно повышен. Полученные значения р = 1,16 свидетельствуют о том, что магниевое покрытие предохраняет бор от взаимодействия со сплавом, содержащим алюминий, а более прочная по сравнению с нелегированным магнием матрица вносит свой вклад в прочность композиции.  [c.110]

Получение композиционного материала методом горячего прессования в вакууме также описано в работе [178]. Для улучшения прочности связи матрицы с волокном и с целью исключения возможности образования на поверхности раздела углеродное волокно—алюминий карбида алюминия на поверхность углеродных волокон наносили слой меди толщиной 0,2—0,4 мкм. Исходные волокна имели предел прочности 200 кгс/мм , плотность 1,73 г/см средний диаметр отдельных волокон был равен 8 мкм. Материал получали в вакууме 2—5 10 мм рт. ст. при температуре 620—650° С и времени выдержки 30—120 мин прессованием пакетов из чередующихся слоев алюминиевой фольги и однонаправленного углеродного волокна с медным покрытием. Предел прочности композиций, содержащих 10—15 об. % волокон, был равен 23—32 кгс/мм , а композиций с 20—40 об. % волокон — 35—48 кгс/ мм . Микрорентгеноспектральное, электронно-микроскопическое исследования композиций, а также исследсвание в растровом электронном микроскопе не обнаружили повреждений углеродных волокон.  [c.138]

Склонность высокопрочных сплавов к хрупкому разрушению может стать тормозом увеличения их прочности. Как выйти из такой ситуации Создать композиционные материалы, представляющие собой сочетание мягкой матрицы и высокопрочных волокон, армирующих ее. Волокна воспринимают основную часть нагрузки, а матрица служит для передачи нагрузки от волокна к волокну. Если волокно разрушится и возникнет трещина, она будет нейтрализована мягкой матрицей. Высокая прочность композици-  [c.52]

Известно, что механические свойства волокон с никелевым покрытием ухудшаются после термической обработки [147]., В связи с этим возникла необходимость нанесения на волокно адщитного покрытия, служащего диффузионным барьером и по-шшающего. прочность композиции. В качестве такого покрытия могут быть использованы карбиды (например, карбид кремния), которые почти не взаимодействуют с никелем, хромом, алюминием, медью и др. Покрытие из карбида кремния получили осаждением из газовой фазы при температуре 1200—1600° С и пониженном давлении по следующей схеме  [c.210]


Смотреть страницы где упоминается термин Прочность композиций : [c.125]    [c.246]    [c.98]    [c.15]    [c.20]    [c.20]    [c.20]    [c.20]    [c.20]    [c.78]    [c.81]    [c.83]    [c.136]    [c.147]    [c.207]   
Механические свойства полимеров и полимерных композиций (1978) -- [ c.269 , c.274 ]



ПОИСК



Композиция



© 2025 Mash-xxl.info Реклама на сайте