Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность Анизотропия

Поэтому и при развитии механических испытаний как экспериментальной основы указанных дисциплин анизотропию материалов большей частью не учитывали. И до сих пор при практической оценке прочности анизотропию механических свойств учитывают сравнительно редко.  [c.324]

Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом характеристики прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а характеристики пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.  [c.59]


У хрупких материалов (например, чугунов) при сжатии наступает хрупкое разрушение, начинающееся с образования трещин н заканчивающееся раскалыванием образца. Однако для таких материалов характерна резкая анизотропия механических свойств при растяжении и сжатии. Например, предел прочности чугуна при сжатии в 2,5 — 4 раза больше, чем при растяжении.  [c.127]

Анизотропия ярко выражена у слоистых пластиков. На рис. 11.19, б, в приведены зависимости предела прочности и модуля упругости при растяжении от направления нагружения для СВАМ 1 1.  [c.45]

Анизотропия свойств должна соответствующим образом учитываться при расчетах на прочность.  [c.45]

Дерево, как известно, обладает ярко выраженной анизотропией упру их и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон. Поэтому разрушение деревянного образца при кручении начинается с образования продольных трещин (рис. 84).  [c.86]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]

Кроме того, условие прочности, определяющее наступление опасных деформаций, приводящих к образованию микро- или макротрещин либо к нарушению нормального функционирования изделия из-за недопустимо больших деформации, должно содержать время и ряд структурных параметров, характеризующих как свойства материала (анизотропия, предел текучести и т. п.), так и характер приложения нагрузок. Таким образом, общее условие  [c.161]

Отдельно взятый кристалл металла анизотропен. Но если в объеме содержится весьма большое количество хаотически расположенных кристалликов, то материал в целом можно рассматривать как изотропный. Поэтому обычно предполагают, что металлы в той мере, в какой с ними приходится иметь дело в инженерной практике, изотропны. Встречаются и анизотропные материалы. Анизотропна, например, бумага полоски, вырезанные из листа бумаги в двух взаимно перпендикулярных направления, обладают различной прочностью. Существует анизотропия тел, связанная с их конструктивными особенностями. Так, анизотропна фанера, анизотропны ткани. В настоящее время широкое распространение получили композиционные материалы.  [c.13]


Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон.  [c.115]

В прокатанных листовых материала с о. ц. к. решеткой анизотропия Ош и От, а также б выражена не очень резко. Но закономерность сводится к тому, что прочность (Ов и Стт) максимальна в направлении ПН, а удлинение в НП.  [c.294]

В связи с тем что базисная плоскость в листах цинка повернута вокруг направления ПН, образцы, вырезанные поперек направления прокатки, более прочны, чем вырезанные вдоль направления прокатки. Такая же закономерность (прочность ПП больше, чем в НП) установлена для магния и его сплавов. В целом же магний более анизотропен, чем цинк. Можно было ожидать, что в металлах с с/а< 1,633 зависимость будет обратной. Однако прямых подтверждений этого пока нет. Для прокатанного титана анизотропия прочности и удлинения в плоскости базиса не установлена.  [c.295]

В металлах, имеющих о. ц. к. решетку, анизотропия свойств усиливается при наличии примесей внедрения. В однофазных чистых металлах анизотропия свойств определяется в основном текстурой. После отжига, приводящего к исчезновению текстуры, анизотропия механических свойств исчезает. Легирование, приводящее к образованию твердого раствора или многофазного сплава, хотя и увеличивает предел прочности и иногда величину равномерного удлинения, практически всегда уменьшает сужение поперечного сечения, за исключением тех случаев, когда введение легирующего элемента  [c.433]

Наконец, следует сделать заключение о раскрытии в конце трещины. Ясно, что для реальных материалов в результате пластического течения раскрытие больше нуля и может считаться как постоянной материала, так и величиной, зависящей от внешней нагрузки. Причем рассчитанные примеры показали, что и в том, и в другом случае расхождение между критическими состояниями невелико (линии 2 ж 3 иа. рис. 18.1, 18.3, 18.4). Более того, начиная с некоторого значения размера трещины, предположение о нулевом раскрытии практически также не изменяет критическое состояние. Отсюда можно сделать вывод, что принятие той или иной гипотезы о степени постоянства раскрытия в конце трещины можно скорее обосновать удобством расчета, нежели соображениями его точности. К этому можно добавить, что детали деформации, отражающиеся на раскрытии в малой окрестности конца трещины, сильно зависят от размера зерна, его анизотропии и неоднородности (а также и от других причин), что вносит в экспериментальное измерение раскрытия некоторую долю неопределенности, позволяющую относиться к результатам непосредственного измерения малых значений раскрытия в конце трещины с известной осторожностью [51]. Поэтому при хрупком разрушении достаточно знать плотность работы разрушения 2 , измеренную на образцах с достаточно большой трещиной, и техническую прочность Оо гладкого образца (в отсутствие трещины). Этих параметров достаточно для построения области предельного состояния тела с трещиной и с ограниченной прочностью при  [c.149]

Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон. Поэтому разрушение деревянного образца при  [c.99]

Если заготовки из одного и того же материала получать различными способами (литье, обработка давлением, сварка), то они будут обладать неидентичными свойствами, т. к. в процессе изготовления заготовки происходит изменение свойств материала. Так, литой металл характеризуется относительно большим размером зерен, неоднородностью химического состава и механических свойств по сечению отливки, наличием остаточных напряжений и т. д. Металл после обработки давлением имеет мелкозернистую структуру, определенную направленность расположения зерен (волокнистость). После холодной обработки давлением возникает наклеп. Холоднокатаный металл прочнее литого в 1,5...3,0 раза. Пластическая деформация металла приводит к анизотропии свойств прочность вдоль волокон примерно на 10... 15 % выше, чем в поперечном направлении.  [c.26]

В результате прочность и твердость увеличиваются, а пластичность уменьшается появляется анизотропия свойств, возрастают остаточные напряжения.  [c.90]

Повышение жесткости в трансверсальном направлении приводит к уменьшению прочности, такое же влияние оказывает увеличение отношения пролет высота балки. Для материалов с высокой анизотропией свойств (а = = 50, = 150) при //Л = 15 напряже-  [c.40]


Анизотропия древесины весьма значительна. Опытом установлено, что прочность древесины вдоль волокон бывает в 8— 10 раз больше ее прочности поперек волокон. Различными оказываются и модули упругости. Так, например, для сосны модуль  [c.102]

Группу Определение механических свойств покрытий составляют методы оценки упругих, прочностных и пластических свойств. Из четырех известных констант упругости для покрытий обычно определяются модуль Юнга и коэффициент Пуассона. Публикаций об экспериментальном исследовании других констант упругости покрытий — модуле объемной упругости и модуле сдвига, по-видимому, нет. Неясным остается вопрос о влиянии пористости на модуль упругости. Одной из самых распространенных и наиболее легко оцениваемых характеристик покрытий является микротвердость. Методика определения микротвердости, обладая несомненными достоинствами (неразрушающее испытание, оперативность измерения, простота и доступность оборудования и т. д.), в то же время дает большое количество информации. Когезионная прочность покрытий (чаще всего, предел прочности) исследуется в продольном и поперечном направлении. Слоистая структура покрытий и резко выраженная анизотропия свойств обусловливают большой разброс результатов измерений прочности. Пластические свойства, по-видимому, могут быть определены только для металлических низкопрочных покрытий.  [c.17]

Проектирование ферм из композиционных материалов таких, какие показаны, например, на рис. 1—4, осуществляется на основе методов, обычно используемых для расчета на прочность. Для того, чтобы определить жесткость, несущую способность или критическую нагрузку элемента фермы, изготовленного из композиционного материала, необходимо учитывать анизотропию и структуру материала [5, 64]. Коэффициенты местной устойчивости, прочность, собственные частоты и упругие постоянные материала определяются свойствами отдельных анизотропных слоев и характером их ориентации в слоистом материале. Эти вопросы и рассмотрены в настоящей главе. Отметим, что согласно принятому ранее определению фермы изгиб ее стержней из рассмотрения исключается.  [c.112]

Требование нормировки возникает по той причине, что различие в значениях пределов прочности для различных ориентаций анизотропных композитов чрезвычайно велико, и это влечет за собой известный факт увеличения разброса пределов прочности с ростом абсолютной величины этих пределов. Другое следствие анизотропии прочностных свойств состоит в том, что поверхность прочности вытянута в направлении большей прочности материала. Таким образом, предлагаемый способ оптимизации не совпадает с общепринятой методикой, при которой минимизация осуществляется по направлению внешней нормали к поверхно-  [c.476]

Рис. 5. Анизотропия свойств типичного полиэфира, упрочненного стекловолокном (прочность при растяжении 7,7 кгс/мм ) Рис. 5. <a href="/info/112979">Анизотропия свойств</a> типичного полиэфира, упрочненного стекловолокном (прочность при растяжении 7,7 кгс/мм )
Другой фактор, который еще не учитывается в теориях сплошной среды, связан с большим различием пластических деформаций, получаемых в действительности на разных сплавах. Ясно, что для теоретического определения пластичности следует принимать во внимание большое количество металлургических параметров. Некоторые из них, например объемное содержание, размер, форма частиц и расстояние между ними, хрупкая прочность частиц и прочность связей с частицами по поверхности раздела, предел текучести и степень деформационного упрочнения матрицы, а также анизотропия формы зерен и частиц и расстояния между частицами, уже упоминались. Достигнут значительный прогресс как в теоретическом, так и в экспериментальном плане по изучению влияния основных параметров, но остается расхождение между действительным поведением и теоретическими результатами.  [c.79]

Отмечают следующие факторы, повышающие амплитуду сигналов АЭ высокая прочность, анизотропия, неоднородность, круп-нозернистость (литая структура), большая общая толщина материала, большая скорость деформации, низкая температура, наличие надрезов.  [c.175]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]


Особенностью бетона как конструкционного материала явЛяются хрупкость и резкая анизотропия механических качеств н склонность к хрупкому растрескиванию даже при небольших напряжениях растяжения, йредел прочности на растяжение в 10—20 раз меньше предела прочности на сжатие. ,  [c.193]

Дерево, как известно, обладает ярко выраженной анизотропией упругих и прочностных свойств. Древесина имеет сравнительно низкую прочность на скалывание вдоль волокон Поэтому разрушение деревянного стержня при кручении начинается с образования продольных трещин от действия касательных напря.жений, возникающих на продольных площадках. Стальной стержень разрушается по поперечному сечению от действия возникающих там касательных напряжений.  [c.55]

Анизотропия кристаллов объясняется их атомной структурой, но существуют материалы, у которых определяющие их анизотропию структурные элементы имеют значительно большие размеры. Примером может служить древесина, расположение видимых невооруженным глазом волокон создает относительно высокую прочность в направлении оси ствола и малую прочность в поперечном направлении. В этом отношении можно сказать, что природа распорядилась прочностью целлюлозы, из которой, в основном, состоит древесина, наилучншм образом. По этому принципу в технике создают так называемые композитные материалы, примером которых могут служить стеклопластики. Тонкая стеклянная нить имеет высокую прочность, укладывая слои такой нити, пропитывая их смолой и полимеризируя, получают монолитные пластины. Чередуя направления укладки слоев, можно менять степень и характер анизотропии с тем, чтобы использовать прочность волокна наивыгоднейпшм образом. В последние годы были получены и промышленно освоены высокопрочные волокна, значительно превосходящие по своим свойствам стеклянное волокно и, что особенно важно, имеющие значительно более высокий модуль упругости. Наибольшее распространение получили волокна бора и углерода, которыми армируют пластики и металлы.  [c.41]

Анизотропия прочности. Выше рассмотрены случаи разной сопротивляемости разрушению материалов при растяжении и сжатии. Однако эти свойства материалов часто зависят от ориентации направлений главных напряжений по отношению к некоторым характерным для данного материала направлениям. Например, в стеклопластиках и им подобных армированных материалах, в которых в относительно мягкой матрице (пластик, металл) уложена с данной системой ориентации относительно жесткая арматура (стекловолокно, борволокно, углеродные усы и т. п.), прочность на разрыв в направлении армирования существенно выше прочности на разрыв в перпендикулярном направлении. В то же время прочность  [c.170]

Высокие жесткость и прочность армирующих волокон, составляющие основу прочности и жесткости композиционных материалов, реализуются лишь в случае их определенного расположения по отношению к действующему полю напряжений (действующей нагрузке). Вследствие большого разнообразия нагрузок применяются различные схемы укладки арматуры. Варьируя направлением укладки слоев, можно получить слоистые материалы с различной ориентацией армирующих волокон, обладающие в плоскости укладки изотропными и анизотропными свойствами. Именно в возможности придания материалу оптимальной для каждого частного случая анизотропии заключается главное преимущество волокнистых композиционных материалов [44]. В зависимости от ориентации армирующих волокон в плоскости укладки слоистые структуры можно подразделить на следующие основные группы однонаправленные, ортогонально-армированные с переменным углом укладки волокон по толщине, перекрестно-армированные и хаотически-армированные.  [c.5]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]

Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

В общем случае под анизотропией акустических свойств металла понимают изменение скорости распространения и коэффициента затухания в зависимости от кристаллографического направления. Она обусловлена анизотропией механических свойств (модуля упругости, пределов прочности и пластичности и др.). Рассмотрим причины анизотропии акустических свойств. Одна из них — это структура материала. Она наиболее ярко проявляется в металлах с крупнозернистой структурой, имеющих транскри-сталлитное строение, т. е. когда кристаллиты имеют упорядоченное строение и их продольные размеры больше поперечных. Примером могут служить титан, аустенитные швы, медь. Вторая причина —термомеханическое воздействие в процессе изготовления проката, которое делает его структуру слоистой, так как волокна металла и неметаллические включения в процессе деформирования оказываются вытянутыми вдоль плоскости листа. Третья —локальная термическая обработка материала, которая обусловливает возникновение напряжений и, как следствие, изменение механических свойств материала.  [c.317]

Окончательное подтверждение предложенной методики построения поверхности прочности с использованием минимально необходимого количества основных экспериментов может быть получено из анализа испытаний композитов с высокой степенью анизотропии. С этой целью рассмотрим результаты, полученные By [53] для слоистого композита, состоящего из графитовых волокон (Morganlte II) и эпоксидной матрицы (производство Уиттекер Корпорейшн). Данные о прочностных свойствах этого композита были получены из эксперименгов, при проведении которых особое внимание обращалось на обеспечение необходимых  [c.467]


Вообще говоря, поле напряжений у вершины трещины в анизотропной пластине включает составляющие Ki п Ки- Однако в настоящее время испытания проводят, как правило, при ориентациях, исключающих одну из этих составляющих это прежде всего относится к ортотропным материалам, которые ориентируют таким образом, чтобы нагрузка была параллельна одной главной оси, а трещина—другой. В таких условиях значительная анизотропия, свойственная некоторым композитам, может привести к явлениям, не наблюдающимся у обычных металлов. Так, при растяжении образцов с направленным расположением упрочнителя часто наблюдают продольное расщепление (рис, 8). Его может и не быть, если поперечная и сдвиговая прочности достаточно высоки [5] тем не менее, этот возможный тип разрушения материалов необходимо учитывать. Кроме того, приложение одноосных растягивающих напряжений к образцу с поперечным расположением слоев приводит к появлению локальных межслоевых напряжений т,2у и нормальных напряжений Ozzt перпендикулярных плоскости образца [35], что показано на рис. 9. Ориентация и значения величин Он и Тгу зависят от порядка укладки слоев, упругих постоянных каждого слоя и величины продольной деформации. Значительные межслоевые растягивающие а г. и сдвиговые х у напряжения могут привести к расслаиванию [11, 35], которое опять-таки является особенностью анизотропных слоистых материалов. Последний пример относится к поведению материала с поверхностными трещинами. В изотропных материалах трещина распространяется, как правило, в своей исходной плоскости (рис. 10, а). У слоистых материалов прочность связи между слоями обычно мала, и они обнаруживают тенденцию к расслаиванию по глубинным плоскостям (рис. 10,6). Три этих простых примера приведены здесь, чтобы проиллюстрировать некоторые из различий между гомогенными изотропными материала-  [c.276]

Следует отметить, что высокий модуль углеродных волокон обусловлен преиму1цественной ориентацией графитовой структуры, возникающей при деградации исходного полимера. Из-за такой структуры свойства волокон являются сильно анизотропными. Особенно важна анизотропия прочности, модуля и коэффициентов температурного расширения, и она отражается в свойствах композитов, которые оказываются более анизотропными, чем аналогичные композиты на основе стеклянных волокон. Для данного типа волокна прочность и модуль композита при осевом растяжении зависят в первую очередь от объемной доли волокон и лишь в незначительной степени от состава используемой  [c.365]


Смотреть страницы где упоминается термин Прочность Анизотропия : [c.601]    [c.249]    [c.45]    [c.708]    [c.168]    [c.86]    [c.154]    [c.364]    [c.81]    [c.241]   
Механические свойства металлов Издание 3 (1974) -- [ c.341 ]



ПОИСК



Анизотропия

Анизотропия и конструкционная прочность

Анизотропия материала. Критерии прочности анизотропных тел

Анизотропия прочности стеклопластиков

Анизотропия характеристик прочности древесины и древесных материалов

Анизотропия характеристик прочности металлов

Влияние анизотропии на прочность деталей машин и конструкций

Диаграммы и поверхности анизотропии характеристик прочности стеклопластиков

Начальное разрушение при изгибе и рациональное проектирование но условиям прочности кольцевых пластин, обладающих цилиндрической анизотропией



© 2025 Mash-xxl.info Реклама на сайте