Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные свойства компонентов

Рис. 7.31. Основные свойства компонента Рис. 7.31. <a href="/info/347408">Основные свойства</a> компонента

Основные свойства компонентов  [c.246]

Скоростные характеристики, дополненные изолиниями концентраций основных токсичных компонентов (на рис. 4 нанесены изолинии концентраций окиси углерода), принято называть многопараметровыми, универсальными токсическими характеристиками двигателя. Они наиболее полно представляют его токсические свойства, характеризуют степень доводки двигателя, отдельных его систем и элементов. В частности, в области максимальных нагрузок рост концентраций СО обусловлен включением в работу обогатительных систем карбюратора — экономайзера, зко-  [c.17]

Весьма существенно следующее обстоятельство протекающий мимо точки пересечения газ может пройти лишь через одну исходящую из этой точки ударную волну или волну разрежения. Пусть, например, газ проходит через следующие друг за другом две исходящие из точки О ударные волны, как это показано на рис. 99, в. Поскольку позади волны Оа нормальная компонента скорости V2n < С2, то тем более была бы меньше сг нормальная к волне Ob компонента скорости в области 2 в противоречии с основным свойством ударных волн. Аналогичным образом убеждаемся в невозможности прохождения газа через следующие одна за другой исходящие из точки О две волны разрежения или волну разрежения и ударную волну.  [c.580]

Связующие компоненты должны обладать следующими основными свойствами  [c.211]

Комбинация же основных двух компонентов пасты - металла и стекла -определяет такие важные свойства, как проводимость, возможность пайки, адгезия к подложке, совместимость с резистивными, диэлектрическими составами и др.  [c.45]

Так как все компоненты напряжений в декартовой системе координат представляют собой бигармонические функции, то по основному свойству таких функций максимальные значения компонент напряжения достигаются на границе области аналогичное положение встречается в гидродинамике (см. стр. 162).  [c.512]

Основная причина отсутствия приложений метода конечных разностей к исследованию упругопластического поведения композитов не связана с механическими свойствами компонентов. Здесь имеют место трудности, носящие скорее геометрический характер и возникающие при любых применениях метода конечных разностей к решению задач в областях с криволинейной границей, т. е. с ограничениями на узлы сетки, лежащие на границе. Эту проблему нельзя обойти дал е при использовании нерегулярной сетки (см. Адамс и др. [4]). Применение же треугольных конечных элементов полностью решает указанную проблему, и именно благодаря этому обстоятельству метод конечных элементов является гораздо более гибким.  [c.224]


Помимо снижения эффективности поверхности раздела, химическое взаимодействие компонентов может привести к ухудшению основных свойств упрочнителя. В результате взаимодействия на поверхности упрочнителя часто возникают углубления и неровно сти, которые, по сущ,еству, являются надрезами. Поскольку боль шинству перспективных упрочнителей присуща высокая собственная чувствительность к надрезу, такие нерегулярности поверхности значительно снижают эффективную прочность упрочнителя, вследствие чего уменьшается и прочность композиционного материала в целом.  [c.47]

Слой — основной элемент в конструкции композита, но, с другой стороны, сам слой состоит из погруженных в матрицу волокон. Следовательно, можно связать конструкционные свойства композита с соответствующими свойствами компонентой. В результате возможно проектировать элементы конструкций из волокнистых композитов, зная конструктивные требования и свойства возможных компонентов композитов.  [c.108]

Разработка руководящих принципов по конструированию материалов, работающих в условиях циклических деформаций. В первую очередь эта проблема относится к поверхности раздела основные факторы, фигурирующие здесь, суть микроструктуры поверхностей раздела и их прочности, механические свойства компонентов и диаметры волокон.  [c.436]

Характеристика. Сталь представляет собой деформируемый железоуглеродистый сплав, содержание углерода в котором обычно не превышает 2,14%, Углерод — обязательный компонент стали. Он определяет ее основные свойства и обусловливает способность изменять их при термической обработке. Содержание углерода в стали находится в пределах 0,05—1,5%.  [c.362]

Подбор сыпучих смесей рекомендуется осуществлять таким образом, чтобы разница по кислотно-основным свойствам составляла 1,6—4,5 единиц при pH смеси 7,0—9,0. Если компоненты отличаются по кислотно-основным свойствам менее чем на  [c.156]

Свойства твердых тел, в том числе и теплофизические, как известно, в значительной степени зависят от совершенства (однородности) их микроструктуры. Клеевые же прослойки соединений на клеях как гетерогенные системы вследствие многообразия свойств компонентов и фаз раздела имеют неоднородные структуры. Неоднородность структур клеевых прослоек касается не только композиционного состава. Возникающие в процессе структурообразования прослойки усадочные и температурные напряжения концентрируются преимущественно на границах раздела фаз клей (адгезив) —склеиваемая поверхность (субстрат) и связующее — наполнитель, создавая сложное внутреннее силовое поле. Вследствие неоднородности структуры и наличия концентраций напряжений в клеевой прослойке приложенное однородное внешнее поле температур вызовет сложное внутреннее температурное поле. В свою очередь внутреннее силовое поле прослойки динамически неравновесно. Обычно как при склеивании, так и в процессе эксплуатации в клеевых прослойках протекают релаксационные процессы, изменяющие концентрации внутренних напряжений (Л. 4]. Вследствие этого внутреннее температурное поле клеевой прослойки постоянно находится в термодинамически неравновесном состоянии и структура его является достаточно сложной. Остановимся на основных факторах, оказывающих влияние на формирование термического сопротивления клеевых прослоек.  [c.14]

В процессе формирования и эксплуатации полимерных покрытий и клеевых соединений на границе раздела фаз за счет различия свойств компонентов, как правило, возникают внутренние напряжения. Эти напряжения изменяются при действии температуры, влажности, в результате протекания процессов структурообразования и старения системы, а также под действием внешнего силового поля. В свою очередь внутренние напряжения, возникающие, например, в процессе формирования полимерных покрытий, оказывают значительное влияние на физико-механические (Л. 62], адгезионные (Л, 63] и теплофизические (Л. 64] свойства. По этой причине внутренние напряжения целесообразно принять за основной критерий, с которым сравниваются остальные показатели гетерогенных полимерных систем.  [c.45]


Атмосферный воздух - это газообразная оболочка земли с постоянно убывающей по высоте концентрацией химически несвязанных и уникальных по своим свойствам компонентов. У поверхности земли состав сухого воздуха по основным компонентам практически не изменяется.  [c.34]

Для практического применения можно указать трехкомпонентные сплавы на основе Си — А1 и Си — 2п. Сплавы с добавкой четвертого легирующего компонента разрабатываются для получения мелкозернистых образцов. Их основные свойства не отличаются от свойств трехкомпонентных сплавов. Наиболее подробно исследованы сплавы Си — А1 — N1 и Си — 2п — А1. Их используют для разработки промышленных сплавов, поэтому ниже рассмотрены соответствующие диаграммы состояния, кристаллическая структура и методы определения температуры превращения.  [c.99]

При выборе состава шлака для конкретного металлургического процесса необходимо учитывать влияние основных шлакообразующих компонентов на свойства шлаковых расплавов.  [c.83]

Основным вяжущим компонентом материалов автоклавного твердения является известь. Для производства силикатных изделий рекомендуется применение быстрогасящейся извести с суммарным содержанием активных оксидов кальция и магния (активностью) более 70%. При этом содержание MgO должно быть не более 5%. Наряду с известью возможно применение портландцемента, в частности в производстве ячеистых бетонов, который способствует повышению морозостойкости изделий. Наиболее распространенный заполнитель силикатных материалов — кварцевые пески. При применении полевошпатовых и карбонатных песков физико-механические свойства изделий ухудшаются.  [c.320]

Кристаллическая фаза является основой керамики и определяет значения механической прочности, термостойкости и других основных свойств. Стекловидная фаза ухудшает механическую прочность и тепловые показатели, однако стеклообразующие компоненты (глинистые вещества) облегчают технологию изготовления изделий.  [c.338]

Основные свойства компонентов смеси, используемые при расчгте теплопроводности  [c.127]

При решении задач автоматизации основные свойства и характеристики объектов описывают с помощью формальных математических объектов, обеспечивающих адекватность и сохраняющих наглядность и необходимую содержательность. При решении задач с помощью САПР и при разработке компонентов КСАП возникает необходимость построения различных ММ и выбора из них наиболее приемлемой.  [c.215]

Работу ракетного двигателя можно представить в виде последовательности квазиравновесных процессов, таких как нагревание топлива, его горение, расширение продуктов сгорания до давления истечения из сопла. Особенность их состоит в зависимости химического состава продуктов сгорания от условий проведения процесса. Термодинамика позволяет рассчитать равновесный молекулярный состав газов на каждом из этапов работы двигателя, если известны необходимые свойства исходных веществ и продуктов сгорания. В итоге удается отделить термодинамические задачи от газодинамических и оценить удельную тягу двигателя при заданном топливе или, не прибегая к прямому эксперименту, подобрать горючее и окислитель, обеспечивающие необходимые характеристики двигателя. Другой пример — расчет электропроводности низкотемпературной газовой плазмы, являющейся рабочим телом в устройствах для магнитно-гидродинамического преобразования теплоты в работу. Электропроводность относится к числу важнейших характеристик плазмы она пропорциональна концентрации заряженных частиц, в основном электронов, и их подвижности. Концентрация частиц может сложным образом зависеть от ис- ходного элементного состава газа, температуры, давления и свойств компонентов, но для равновесной плазмы она строго рассчитывается методами термодинамики. Что касается подвижности частиц, то для ее нахождения надо использовать другие, нетермодипамические методы. Сочетание обоих подходов позволяет теоретически определить, какие легкоионизирующиеся вещества и в каких количествах следует добавить в плазму, чтобы обеспечить ее требуемую электропроводность.  [c.167]

В PDM разнообразие типов проектных дагшых поддерживается их классификацией и соответствующим выделением групп с характерными множествами атрибутов. Такими группами данных являются аспекты описания, те. описания изделий с различных точек зрения. Для больщинства САПР в мащиностроении характерными аспектами являются свойства компонентов и сборок (эти сведения называют Bill of Materials - BOM), модели и их документальное выражение (основными примерами могут служить чертежи, 3D модели визуализации, текстовые описания), структура изделий, отражающая взаимосвязи между компонентами и сборками и их описаниями в разных группах.  [c.293]

В связи с указанным основным свойством пластической среды в пространстве напряжений, т. е. в девятимерном пространстве, точки которого задаются значениями напряжений можно отметить область 2)р такую, что если для данного процесса точка рУ лежит строго внутри области р, то частица ведет себя как упругое тело. В противном случае в частице могут возникать пластические (остаточные) деформации. Граница 2р области 2)р представляет собой совокупность пределов упругости для всевозможных напряженных состояний. Компоненты тензора напряжения взятые в декартовой пространственной системе координат х, у, 2, МОЖНО рассматривать как декартовы координаты точек в области 3)р. В девятимерном евклидовом пространстве ) рч в общем случае область 2)р девятимерна, так как упругие напряжения могут быть в известной степени произвольными, а 2р восьмимерна.  [c.423]

Бронзы. Различают бронзы оловянИстые (медные сплавы, в которых основным легирующим компонентом является олово) и без-оловянистые (двойные или многокомпонентг.ые медные сплавы, содержащие в качестве легирующих элементов алюминий, никель, кремний и др.). Оловяннстые бронзы (ГОСТ 613—65) обладают высокими антифрикционными и литейными свойствами, а также высокой коррозионной стойкостью. Применяют их в качестве антифрикционных материалов для изготовления арматуры и т. п. Бронзы по ГОСТ 5017—49 применяют для вкладышей подшипников скольжения, зубчатых колес и венцов, упругих элементов приборов, токопроводящих деталей. Стоимость бронзы превышает стоимость стали 45 в среднем в 10 раз. Свойства некоторых марок бронз приведены в табл 3.4.  [c.213]


Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]

Механические свойства композита и закономерности измене, ния его структуры можно оценить аналитически с помощью основных характеристик компонентов [16, 35, 46]. Этот подход, основанный на механическом континууме, ведет к хорошо известному правилу смеси, связывающему значение данной характеристики с объемной долей каждой фазы в композите. Такие микромехани-  [c.232]

В данной главе излагаются микромеханические теории, применяемые для предсказания прочности однонаправленных композитов при одноосном нагружении. В этих теориях заранее предполагаются известными необходимые для расчетов свойства компонентов и считается, что направление нагружения совпадает с главными осями однонаправленного композита. Рассматриваемые прочности связаны с сопротивлением либо нагружению в плоскости, либо изгибу, либо простому сдвигу. Обсуждение относится в первую очередь к волокнистым композитам с неметаллической матрицей, в которых все волокна уложены параллельно и в одной плоскости. Однако представленные здесь микромеханические теории можно перенести и на волокнистые композиты с металлической матрицей, если при этом не нарушаются основные допущения. Некоторые описанные ниже представления могут быть также приложены к композитам с дисперсными частицами.  [c.107]

Теоретические методы определения прочности однонаправленного слоя на основе свойств компонентов могут быть разделены на три основные категории  [c.128]

Изучение длительной прочности и ползучести композитов с металлической матрицей осуществлялось рядом исследователей в основном на следующих материалах вольфрам — медь, вольфрам — никелевые сплавы и бор — алюминий. Большинство испытаний проводилось при повышенных температурах, что может привести к недооценке свойств композита из-за взаимодействия между волокнами и матрицей. Экспериментальная работа сопровождалась теоретическим анализом, подобным оценке прочности по правилу смесей . Мак-Данелсом и др. [39] исследована длительная прочность и скорость ползучести композитов на основе меди, армированных вольфрамовыми волокнами полученные данные сопоставлены со свойствами компонентов при помощи соответствующего анализа. Испытания проведены при 649 °С и 816 °С.  [c.297]

Как только были созданы вычислительные программы для расчета перемещений в характерном элементе системы волокно — матрица, стало доступным рассмотреть широкий класс возможных расположений волокон и свойств компонентов. Можно исследовать частные случаи нагружения параллельно направлению укладки волокон, перпендикулярно этому направлению, случаи сдвига параллельно и перпендикулярно волокнам и с.лучаи температурной усадки. Более общие результаты можно получить при суперпозиции этих простых видов нагружения. Таким образом, возможно определить основные константы композита, распределения напряжений и деформаций в матрице, распределение напряжений около границы раздела волокно — матрица, а также на основе различных критериев можно предсказывать разрушение. Справедливость результатов обычно проверяется точностью предсказания упругих констант однонаправленных композитов. Предсказания прочности знаяительно менее надежны.  [c.335]

Жароупорный бетон — специальный вид бетона, способный сохранять в заданных пределах основные свойства при длительном воздействии на него высоких температур. Этот бетон состоит из портландцемента, тонкомолотой добавки (шамот, хромит, кварцевый песок, шлак, зола и т. п.), мелкого и крупного заполнителя (шамот, базальт, диабаз, шлак и т. п.) и воды. Вид и соотношение компонентов в бетоне зависят от условий его эксплуатации. 1 бетона, рассчитанного на службу при 1100—1200° С, содержит портландцемента — 300 кг, тонкомолотого шамота — 100—300 кг, шамотного песка 500—700 кг, шамотного щебня — 700 кг и воды 330 л. Марки бетона от 100 до 300 (предел прочности при сжатии образцов 10Х 10Х 10 см, высушенных при 110° С в течение 32 ч, через 7 суток после изготовления). Температура начала деформации жароупорных бетонов на шамотном заполнителе под нагрузкой 2 кПсм равна 1100—1200° С, а конца 1350—1400° С. Термостойкость этих бетонов не ниже термостойкости шамотных изделий их коэффициент линейного расширения в интервале температур 20—900° С изменяется в пределах 6-10 — 8-10 , линейная усадка при максимальных температурах равна 0,4—1,0%. В зависимости от состава бетона максимально допустимые температуры элементов конструкций колеблются в пределах 350—1400° С. Объемный вес бетона 1800—2800 Сушку и разогрев теплового агрегата можно осуществлять только через 7 суток твердения бетона со скоростью подъем температуры до 150° С—5—40° /i< выдержка при 150° С — 0,33—7 суток, подъем температуры от 150° С до рабочей 25—200° С/ч. Жароупорный бетон применяют для кладки фундаментов доменных печей, стен боровов, регенераторов, шлаковиков, кессонов, сборных отопительных печей и т. п.  [c.519]

Медноникелевые сплавы — сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению они подразделяются на две группы — конструкционные и электротехнические сплавы. Марки, химический состав и назначение медно-нпкелевых сплавов приведены в табл. 39, а виды полуфабрикатов и их механические свойства — в табл. 40.  [c.165]


К числу материалов, появившихся в рассматриваемый период и нашедших весьма большое практическое распространение, относится гуттаперча, получаемая из смолы гуттаперченосных растений. По своему составу и свойствам гуттаперча близка к натуральному каучуку. Основной ее компонент — высокомолекулярный транс-полиизопрен-гутта, представляющий изомер цис-полиизоирена, углеводорода натурального каучука. Кроме гутты, гуттаперча содержит смолы, белковые вещества, влагу и т. д. Сок гуттаперчи затвердевает скорее, чем сок каучука. Сырая гуттаперча тверже сырого каучука и менее эластична. В основу технологической переработки сырой гуттаперчи положена вулканизация. Гуттаперчу, используемую в технических целях, снабжали различными наполнителями. Ее стали широко применять в качестве изоляционного материала Б производстве подводных кабелей, для выделки хирургических инструментов, пломбирования зубов, при изготовлении предметов домашнего обихода и в других областях 172, с. 151, 152].  [c.197]

В общем случае диаграмма растяжения однонаправленного волокнистого композита (рис. 7.3) должна состоять из трех основных участков [ - матрица и волокна деформируются упруго П - матрица переходит в упруго-пластическое состояние, волокна продолжают дефор.миро-ваться упруго III - оба компонента системы находятся в состоянии пластической деформации. В зависимости от свойств компонентов композита участки И и III на кривой могут отсутствовать.  [c.83]

Сплавы на основе меди, в которых основными легирующими компонентами являются никель и цинк, 1. азы-ваются нейзильберами. Оин представляют собой твердые растворы на основе меди. Легирование цинком приводит к повышению механических свойств медно-никелевых сплавов и приданию им красивого серебристого цвета и удешевлению. Нейаильберы отличаются высокой коррозионной стойкостью ие окисляются на воздухе, сравнительно устойчивы в органических кислотах и растворах солей. Нейзильберы обрабатываются давлением в горячем (за исключением свинцовистого нейзильбера) и в холодном состоянии. Небольшое количество свинца вводится для улучшения обработки резанием.  [c.114]

Ниже мы приводим общую сводную табл. 3 основных физических констант главных стеклообразующих окис тов и табл. 4 объемных коэффициентов термического расширения веществ, имеющих наибольшее применение в производстве глазурей. Этими данными можно пользоваться для расчета того или иного физического свойства глазури, на которое распространяется правило аддитивности. Следует оговориться, что приведенные в табл. 3 и 4 коэффициенты аддитивности отнюдь не выражают действительных значений свойств отдельных свободных окислов, а представляют собой лишь расчетные коэффициенты для тех или иных свойств компонентов стеютй (глазури).  [c.20]

На каждый из упомянутых выше механизмов потерь оказывают влияние свойства топлива и конструкция камеры сгорания. Хотя теоретический удельный импульс системы определяют термодинамические и кинетические характеристики, степень его достижения обусловливается и газодинамическими эффектами. Дробление и испарение капель в основном определяют полноту сгорания и оказывают лишь второстепенное влияние на кинетические потери и потери в пограничном слое. Распыливание топлива определяется конструкцией форсунок и смесительной головки, тогда как скорости испарения зависят от конструкции камеры сгорания и свойств компонентов топлива. С точки зрения экономичности оптимальной является смесительная головка, обеспечиваюп ая такое распыление компонентов топлива, при котором они испаряются с одинаковой скоростью, а испарение завершается в одном поперечном сечении камеры сгорания. Камера при этом должна обеспечить достаточно большую относительную скорость Av между газом и каплями, чтобы полностью испарить последние на располагаемой длине. Характер изменения Аи по длине камеры определяется в значительной степени коэффициентом сужения камеры сгорания Лк/Лкр. Другими факторами, влияющими на распыление топлива, являются перепад давления ка форсунках, начальный размер капель, устойчивость внутрикамерного процесса, характер соударения струй, свойства топлива, самовоспламеняемость и турбулентность газов в камере. Распределение топлива в факеле распыла определяет влияние качества смешения компонентов  [c.169]


Смотреть страницы где упоминается термин Основные свойства компонентов : [c.12]    [c.9]    [c.451]    [c.16]    [c.82]    [c.74]    [c.15]    [c.4]    [c.154]    [c.163]   
Смотреть главы в:

Структура и возможности систем P-CAD для Windows  -> Основные свойства компонентов



ПОИСК



1.184 — Основные компоненты

136 — Коэффициент трения 135 Механические свойства 136 — Основные компоненты 108 — Основные

136 — Коэффициент трения 135 Механические свойства 136 — Основные компоненты 108 — Основные операции изготовления 109, 110 Основные требования 107, 135 Применение 107 — Прнрабатываемость 136 — Способы изготовления

Влияние содержания основных компонентов на магнитные свойства сплавов

Мер основные свойства

Некоторые свойства бесконечно тонких компонентов, вытекающие из теории основных параметров

Свойства компонентов

Свойства основных компонентов композиционных материалов

Свойства основных компонентов электролитов алюминиевых электролизеров

Уравнение состояния ли — iJpoapa — сдаистера Вторые вириальные коэффициенты для смесей Правила смешения Правила смешения для смесей жидкостей ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Содержание главы Основные термодинамические принципы Функции отклонения от идеального состояния Вычисление функций отклонения от идеального состояния Производные свойства Теплоемкость реальных газов Истинные критические точки смесей Теплоемкость жидкостей Парофазная фугитивность компонента смеси ДАВЛЕНИЯ ПАРОВ И ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ЧИСТЫХ ЖИДКОСТЕЙ

Физико-химические свойства основных компонентов жидкостей и их водных растворов

Физико-химические свойства основных компонентов композитов

Электролиты сернокислые — Основной компонент 1.106 — Скорость осаждения никеля 1.106, 108 — Составы электролитов, физико-химические свойства



© 2025 Mash-xxl.info Реклама на сайте