Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженно механизм передачи

Все кривые деформирования на рис. 4.4 имеют линейный начальный участок. Наклон и точка перелома кривой зависят от направления приложения нагрузки. Положение точки перелома определяется и видом нагружения. По сравнению с растяжением при испытании на сжатие (рис. 4.4, б) точка перелома кривой смещается в диапазон более высоких напряжений. Наличие перелома на кривой деформирования свидетельствует о качественном изменении в механизме передачи усилий [51].  [c.100]


Рассматривая механизм передачи напряжений в композите, необходимо учитывать вид испытания (сжатие или растяжение) и характер нагружения. Основная задача заключается в оценке эффективности передачи нагрузки и анализе отклонений от правила смеси для случаев сжатия, растяжения, ползучести и усталости.  [c.238]

Независимо от механизма передачи напряжений поверхность раздела может явиться самостоятельным источником упрочнения, если микроструктура композита мелкодисперсна. Причина этого эффекта может заключаться во взаимодействии скользящих дислокаций с дислокациями поверхности раздела, а также в связанных с поверхностью раздела силах изображения и в механическом стеснении при деформации матрицы.  [c.263]

На рис. 277 приведен чертеж моста с пропетом 55 м. На этом примере четко видно, как понимание механизма передачи нагрузок и возникновения напряжения и соответственный подбор поперечных сечений приводят к сквозным легким конструкциям мостов, характерным для Шухова.  [c.140]

Для разработки самых обычных, несущих нагрузку деталей конструкции, имеющих приемлемый прогиб под нагрузкой, можно использовать относительно простой метод анализа напряжений. При сравнении с соответствующими стальными фланцевыми, трубчатыми деталями и деталями крышки необходим более серьезный учет механических факторов при компенсации более низкой величины модуля эластичности АП. При расчете и оценке таких ситуаций очень важно, чтобы конструкция сохраняла бы свою форму под нагрузкой и по возможности части ее были бы связаны (склеены) между собой, образуя единую секцию для обеспечения необходимой стабильности. В некоторых случаях для предотвращения деформирования секций могут быть использованы ребра жесткости и косынки. При правильной разработке конструкций разрешается введение внутренних элементов для связывания внешних панелей без серьезного искажения формы. Таким образом, создается возможность создания закрытых секций и одновременно лучший механизм передачи нагрузок на внешние панели и от них на конструкцию.  [c.504]

Рис. 1.10. Механизм передачи напряжений в слоистом композите. Приведена схема композита как свободного тела с несвязанными слоями. Рис. 1.10. Механизм передачи напряжений в <a href="/info/37420">слоистом композите</a>. Приведена схема композита как <a href="/info/6385">свободного тела</a> с несвязанными слоями.

Фиктивные напряжения физически интерпретируются как та часть истинных напряжений Оц в твердой фазе, которая обусловлена независимым от жидкости (и единственным в сухой пористой среде) механизмом передачи импульса — по контактам между твердыми зернами.  [c.27]

Напряжение, в Число оборотов в 1 мин Тин передачи от электродвигателя к щетке Число оборотов щетки в 1 мин Тип электродвигателя привода механизма передачи шпалы  [c.66]

Допускаемые напряжения при расчете на изгиб принимаются по общим формулам, приведенным в гл. I. Расчет этих напряжений для передач механизмов подъема и изменения вылета стрелы производят исходя из пульсирующего цикла, а для передач механизмов передвижения и поворота — из симметричного цикла.  [c.48]

Чрезмерный натяг приводит к защемлению тел качения, в результате чего появляются излишние напряжения в передаче, увеличивается усилие на перемещение механизмов, повышается нагрев, не обеспечивается заданная скорость подачи, станки захлебываются — возможна остановка.  [c.217]

Расчеты обычно начинают с определения потребной мощности привода, выбора электродвигателя, определения общего передаточного числа механизма и разбивки его по ступеням. Затем приводят расчеты ременной, цепной и зубчатой передач, муфт, винтовых пар и др. При этом необходимо обосновать выбор материалов соответствующих деталей, вида термообработки, допускаемых напряжений, расчетных коэффициентов и др. Необходимо обосновать также выбор размеров, устанавливаемых не расчетом, а конструктивными соображениями или на основе рекомендаций из учебной или справочной литературы.  [c.14]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

Реакционная способность силанов по отношению к органической составляющей композита. Чтобы обеспечивать хорошее связывание составляющих композита по поверхности раздела и тем самым улучшать передачу напряжений от матрицы к упрочнителю, необходимо также знать факторы, обусловливающие адгезионную связь между силаном и полимером. Для объяснения эффективности силанов в повышении адгезии аппретированного стекловолокна к полимеру предложены следующие механизмы адгезионной связи  [c.145]


Функциональная схема установки, представленная на рис. 1, состоит из намагничивающего устройства 3 с блоком питания 1, механизма угловых колебаний 6, измерительной 10 и опорной 7 катушек, усилителей измерительного 13 и опорного 8 каналов, генератора управляющих напряжений 11, измерителя отношения двух сигналов 9, регистрирующего устройства 12. Под будем понимать коэффициент передачи л-го ее узла. Работа установки заключается в следующем. Механизм угловых колебаний посредством генератора управляющих напряжений 11 сообщает оси 4 с закрепленными на ней испытуемым образцом и постоянным магнитом 5 угловые периодические колебания с частотой Q. Амплитуда угловых колебаний составляет примерно 0,5°.  [c.153]

В расчетах кулачковых механизмов рекомендуется принимать допускаемые контактные напряжения равными удвоенному или утроенному пределу текучести материала. Эта рекомендация недостаточно проверена, кроме того, ей трудно пользоваться при деталях с упрочнением поверхностного слоя. Поэтому до тех пор, пока не будут выполнены необходимые исследования, целесообразно использовать методику определения контактных напряжений и численные значения употребляемые в расчетах зубчатых передач [7]. При расчете по этой методике надо принимать равное допустимому напряжению на смятия при = 1, т. е. (2- -3)-45 кГ/мм .  [c.241]

Сложной задачей является соединение монолитных пластмассовых шестерен с валом зубчатого механизма. Соединение с помощью призматических или клиновых затяжных шпонок подходит только для передачи малых мощностей . При повышенных нагрузках и реверсивном характере работы зубчатой передачи целесообразно устанавливать несколько шпонок. В шпоночном соединении рекомендуется применять закругленные шпонки, уменьшающие концентрацию напряжений в шпоночном пазе шестерни. В составных металло-пластовых шестернях хорошо зарекомендовало себя применение металлических ступиц в виде запрессовок с зубчатыми выступами, облегчающими передачу крутящего момента с металла на пластмассу.  [c.195]

Это определение допускаемых напряжений не лишено основания, так как при заклинивании и расклинивании ролики, перекатываясь со скольжением по рабочим поверхностям обойм, вызывают напряженное состояние, как и на рабочих поверхностях зубчатых передач. Для наиболее распространенных механизмов  [c.90]

КОНТАКТНЫЕ НАПРЯЖЕНИЯ механические — напряжения, к-рые возникают при механич. взаимодействии твердых деформируемых тел на площадках их соприкасания и вблизи площадок (напр., при сжатии соприкасающихся тел). Знание К. н. важно для расчёта па прочность подшипников, зубчатых и червячных передач, шариковых и цилиндрич. катков, кулачковых механизмов и т. и. Определение К. н. составляет задачу, наз. контактной.  [c.445]

Такая машина использует энергию давления жидкости. Ее устройство несколько схоже с устройством паровой машины (фиг. 1-3) в ней поршень двигается поочередно в двух направлениях, для чего золотник впускает воду под давлением в цилиндр то с одной его стороны, то с другой. Движение поршня передается кривошипным механизмом на вал. Такие мелкие двигатели в XIX в. присоединялись к городским водопроводам. Их использование почти прекратилось с введением электрической передачи и электродвигателей. Теперь они применяются в той или иной форме лишь в виде мелких подсобных механизмов в ряде специальных машин, в частности в станках для обработки металлов. Поршневые двигатели без кривошипного механизма, а лишь с передвижением напряженного штока применяются в гидротехнических устройствах, например для обслуживания затворов, в гидравлических прессах [Л. 99], а также в виде сервомоторов ( 14-15) при обслуживании гидротурбин.  [c.11]

Упругие перемещения (деформации) валов и осей, как правило, оказывают неблагоприятное влияние на работу связанных с ними соединений (шлицевых, шпоночных и др.), подшипников, зубчатых передач и других деталей и узлов, увеличивают концентрацию напряжений, снижают сопротивление усталости деталей и соединений, увеличивают износ, понижают точность механизмов и т. д. Большие перемещения сечений (перекосы) валов от изгиба могут привести к заклиниванию.  [c.419]

Выбор любой приближенной модели для определения упругих свойств пространствен но-армврованного композиционного материала, исходя из свойств повторяющегося элемента (в идеальном случае — это решение краевой трехмерной задачи теории упругости на структурном уровне волокно—матрица), требует задания статико-кинематических соотношений, определяющих механизм передачи усилий между элементами среды. Для слоистой модели эти соотношения обусловливают равенство деформаций в плоскости слоев вдоль высоты слоистой структуры материала и равенство напряжений, действующих в поперечном к плоскости слоев направлении (см, (3.16) . Для других моделей, характеризующих пространственную структуру многонаправленного композиционного материала, статико-кинематические соотношения на поверхностях раздела разнородных элементов без решения  [c.82]

Рассматриваемые углерод-углерод-ные материалы при нагружении на растяжение в направлении армирования, так же- как и материалы с полимерной матрицей аналогичной структуры, имеют линейную зависимость о (в) до разрушения (рис. 6.12). Кривые деформирования зтих материалов при сжатии имеют отчетливо выраженный перелом, свидегельстБу-ющий о качественных изменениях в механизме передачи усилий. Напряжения,, при которых наблюдается перелом Б зависимости о (е), составляют 0,55—0,60 от предела прочности. Отличной но отношению к материалам с полимерной матрицей является зависимость прогиба от нагрузки при поперечном изгибе углерод-углеродных материалов (рис. 6.13). Кривые tFmax (i ) имеют несколько переломов, причем даже при малых отношениях l h образца характер этих кривых не изменяется.  [c.186]


Потенциальные возможности волокнистого композита в наибольшей степени проявляются при его нагружении в направлении волокон. В этом случае очень важен механизм передачи нагрузки от волокон к матрице и обратно. Существуют четыре возможных вида разрушения (1) разрыв волокна, (2) сдвиговое разрушение на границе раздела, (3) разрыв по границе раздела от растяжения и (4) разрыв матрицы. Полный микромеханиче-ский анализ напряжений должен предсказывать вид разрушения в данном композите и определять оптимальные свойства компонентов композита.  [c.517]

Книга посвящена рассмотрению результатов изучения поверхности раздела упрочнитель — полимерная матрица в композиционных материалах волокнистого строения. В ней подробно обсуждаются проблемы, которые были только затронуты в книге Современные композиционные материалы . Среди них такие, как химия поверхности армирующих волокон, природа связи на поверхности раздела, роль различных обработок поверхности волокон (в основном силановыми аппретами) в формировании границы раздела полимер — минеральные волокна, механизм передачи напряжений через поверхность раздела, влияние начальных термических напряжений на механические свойства композитов, стабильность композитов при воздействии влаги.  [c.5]

В данной главе раосматривается механизм передачи нагрузк>1 от матрицы к волокну через поверхность раздела и тем самым влияние поверхности раздела на структурную целостность композита. В Частности, анализируется влияние адгезии на прочность композитов и морфологию поверхности разрушения рассматриваются адгезионная прочность, методы измерения и расчета напряжений на поверхности раздела, остаточные напряжения и зависимость адгезии на поверхности раздела от режима нагружения композита, а также от наличия в нем пор и размеров волокон. Обсуждается возможность получения композитов с заданными адгезионными свойствами. Чтобы отразить общие тенденции и подчеркнуть наиболее важные моменты, многие из этих зависимостей иллюстрируются графически. Теоретическое рассмотрение указанных вопросов сопровождается соответствующими экспериментальными данными.  [c.44]

Результаты исследования [6] послужили в качестве отправной точки для разработки механизма передачи напряжений между слоями в композите. Как отмечалось выше, компоненты напряжения а , и достаточно малы для слоистых композитов со структурой [ 45] , что, вероятно, справедливо для всех перекрестно армированных слоистых композитов, хотя в них могут наблюдаться слабые сингулярно сти этих напряжений [5]. Межслойные компоненты создают большие трудности для реализащш метода конечных разностей при решении  [c.20]

Специфические капиллярные явления, процессы адсорбции и абсорбции, химические и механохимические процессы, протекающие при воздействии на стеклопластики жидких сред, затрудняют применение термофлуктуа-ционной теории и ее математического аппарата. В этой теории хрупкое разрушение в силовом поле рассматривается как термодеструкция, т. е. как химическая реакция, активируемая напряжением. Капиллярные явления приводят к ускоренному заполнению сообщающихся субмикроскопических дефектов структуры низкомолекулярным веществом. Появление на границе раздела компонентов новой фазы приводит к изменению механизма передачи усилия от наполнителя к полимерной матрице и быстрому падению прочности в начальный период контакта материала со средой. Взаи-  [c.150]

Релаксационные П. г. Наиболее распространены мультивибраторы и блокинг-генераторы на транзисторах, дающие импульсы напряжения, близкие по форме к прямоугольным. Блокинг-гене-ратор иа транзисторах (рис. 5) имеет особенности, связанные с диффузионным механизмом передачи тока в транзисторах накоплением заряда в базе в области насыщения видом вольтамнерных характеристик р — ге-переходов транзистора. Проводимость р — и-перехода в обратном направлении ограничивает макс. длительность паузы между импульсами и является причиной зависимости периода колебаний  [c.118]

Повышенные температуры наблюдаются не только в тепловых машинах, у которых нагрев является следствием рабочих процессов. В холодных машинах нагреваются механизмы, работающие при высоких скоростях и больших нагрузках (зубчатые передачи, подшипники, кулачковые механизмы и т. д.). Детали, подверженные циклическим нагрузкам, греются в результате упругого гистерезиса при многократно повторных циклах нагружения-разгруженпя. Повышение температуры сопровождается изменением линейных размеров деталей и может вызвать высокие Напряжения.  [c.360]

Работоспособность фрикционных, зубчатых и чер-вяных передач, подшипников качения и многих других узлов и механизмов машин определяется прочностью рабочих поверхностей деталей, или, как принято говорить, контактной прочностью. В этом случае разрушение рабочих поверхностей деталей вызывается действием контактных напряжений Он. Контактными называют напряжения, возникающие в месте контакта двух деталей, когда размеры площадки контакта малы по сравнению  [c.26]

Барьерное упрочнение для чистых ГЦК-металлов невелико, так как среди большого числа систем скольжения, близких друг к другу в связи с особенностями симметрии этих кристаллов, в соседнем зерне всегда найдется благоприятная для скольжения ориентировка [14, 252]. В ОЦК-металлах механизм эстафетной передачи деформации через границы зерен дополнительно затрудняется из-за повышенной склонности этих металлов к сегрегации примесей внедрения [9]. Барьерное упрочнение, как отмечается в [14], более эффективно для металлов с гексагональной решеткой, деформируемых при комнатной температуре. В этих условиях есть только одна плоскость легкого скольжения, и лишь немногие зерна ориентированы благоприятно по отношению к приложенному напряжению. Поэтому монокристаллы с ГПУ-решеткой, ориентированные для базисного скольжения, медленно наклепываются вплоть до значительных деформаций, а поликристалли-ческие образцы упрочняются значительно быстрее.  [c.114]

Ведущий вал 3 приводится во вращение электродвигателем 2 через клиноременную передачу и вращается с постоянной скоростью 1250 об1мин. Шпиндель 4 может иметь две скорости вращения в зависимости, от положения двойной конической фрикционной муфты 5 — 3000 и 300 об мин (соответственно частоты возбуждения 50 и 5 гц). Фрикционная муфта замкнута пружиной 6 в положении, соответствующем основной (высокой) частоте. Программирование режима испытаний по напряжениям и частоте производится по командам от программного барабана 9, передвижные кулачки которого, воздействуя на микропереключатели, замыкают соответствующие электрические цепи иаполнительных механизмов. Программный барабан вращается с постоянной скоростью, не зависящей от частоты возбуждения, так как его привод осуществляется от ведущего вала 3.  [c.73]

Для преобразования солнечной энергии в электрическую известны три основных метода. Во-первых, это применяемый на спутниках фотоэлектрический метод прямого преобразования света в электричество при низком напряжении при помощи дорогих и сравнительно малоэффективных солнечных элементов, стоимость которых в 1973 г. оценивалась примерно в 20 долл. США на 1 Вт. Упрощенные более дещевые модели используют для зарядки аккумуляторов на буровых установках на шельфе и т. д. Во-вторых, используется тепловой метод, при котором применяют различные типы коллекторов плоские, вогнутые, желобообразные, цилиндрические или параболические с механизмами для их перемещения или без них со специальными чувствительными покрытиями или без них. В коллекторах солнечная энергия нагревает промежуточный энергоноситель, которым обычно является вода, а в некоторых схемах жидкий натрий (см. ниже). Третий метод наиболее далек от воплощения он предусматривает сооружение солнечных станций на спутниках Земли с передачей энергии при помощи микроволн на наземные приемные станции.  [c.216]


Бурение скважин. Упрощенная технологическая схема ЭИ-проходки скважин с обратной циркуляцией промывочной жидкости нагнетанием приведена на рис. 1.4. Схема включает источник импульсного напряжения, буровой снаряд с направляющими и спускоподъемными механизмами и систему промывки скважин. Главными элементами бурового снаряда являются буровой наконечник (буровая коронка), колонна буровых штанг и высоковольтный ввод. Буровые штанги кроме функций, присущих механическим способам бурения, вьшолняют также функцию передачи импульсов напряжения от генератора импульсов к буровому наконечнику, для чего они снабжаются центральным тоководом, а обратным тоководом служит наружная труба штанги.  [c.14]

Рычажно-кулисные механизмы угловой передачи 2 — 81 Рычажио-тормозные передачи вагонные — Допускаемые напряжения 13 — 642  [c.246]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Управление системами преобразовательных агрегатов и исполнительными двигателями осуществляется через станцию управления типа ПГ40В-54А1. Для переменного тока принято напряжение 380 е, для постоянного тока 110 е. Управление обозначено на принципиальной электрической схеме (рис. 3) индексами УМСП, УМСН и умев. Привод каждого механизма осуществляется через систему редукторов и зубчатых передач. На рис. 4 даны упрощенные кинематические схемы рабочих органов экскаватора.  [c.23]

В заключение отметим, что для шариковинтовых механизмов, предназначенных для длительной эксплуатации, допускаемые контактные напряжения при твердости контактирующих поверхностей элементов 61 HR 3 рекомендуется выбирать в пределах [Oj ] = 2500. .. 3000 МПа. При кратковременной работе передачи можно принимать [Ок 4000 МПа.  [c.120]


Смотреть страницы где упоминается термин Напряженно механизм передачи : [c.230]    [c.60]    [c.169]    [c.293]    [c.24]    [c.315]    [c.265]    [c.394]    [c.212]    [c.90]    [c.128]    [c.165]    [c.274]   
Межслойные эффекты в композитных материалах (1993) -- [ c.0 ]



ПОИСК



Напряженно

Напряженность



© 2025 Mash-xxl.info Реклама на сайте