Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера метод уравнения динамические

Если при этом система уравнений (5.10) есть модель динамической системы (например, электронной схемы), то величины— 1Д/ принято называть постоянными времени т>. Тогда условие устойчивости явного метода Эйлера приводится к виду  [c.239]

Глава 4 предоставила нам необходимый кинематический аппарат для исследования движения твердого тела. Углы Эйлера дают нам систему трех координат, которые, хотя и не вполне симметричны, однако удобны для использования их в качестве обобщенных координат, описывающих ориентацию твердого тела. Кроме того, метод ортогональных преобразований и связанная с ним матричная алгебра дают мощный и изящный аппарат для исследования характеристик движения твердого тела. Мы однажды уже применили этот аппарат при выводе уравнения (4.100), связывающего скорости изменения вектора в неподвижной системе координат и в системе, связанной с телом. Теперь мы применим этот аппарат для получения динамических уравнений движения твердого тела в их наиболее удобной форме. Получив эти уравнения, мы сможем рассмотреть несколько простых, но важных случаев движения твердого тела.  [c.163]


Очевидно, что с усложнением динамической модели агрегата и увеличением порядка системы уравнений, описывающей его движения, использование уравнений Эйлера — Лагранжа для определения оптимального управления становится все более затруднительным. Метод решения, не требующий непосредственного решения этих уравнений, является в таких случаях наиболее удобным.  [c.334]

В настоящей работе решен цикл новых задач выбора динамически оптимальных законов движения механизмов по различным критериям в вариационной постановке [11—19]. При решении этих задач использованы как методы, связанные с интегрированием уравнения Эйлера для функционала, соответствующего выбранному критерию оптимального движения, так и прямые вариационные методы.  [c.5]

Метод решения. Искомая динамически оптимальная функция находится в результате решения вариационной изо-периметрической (в силу соотношений (1.6) и (1.7)) задачи. В настоящей работе для решения этих задач используются как методы, связанные с интегрированием уравнения Эйлера для заданного функционала, так и прямые вариационные методы.  [c.19]

Для каждого из пяти семейств деформаций, приведенных в при-л( жении 3, можно найти динамическое решение, однако соответствующие поверхностные силы трудны в реализации. Только в двух случаях, а именно при осцилляции по радиусу толстостенных сферической и цилиндрической оболочек, представление поверхностных сил простое. Решения для этих случаев, полученные на основании уравнений движения в форме Эйлера, даны в работах [67, 68]. Решение для цилиндрической оболочки, полученное на основе метода, изложенного выше, дано в работе [69]. В следующем пункте обсудим кратко это решение.  [c.193]

Большая часть сделанных добавлений связана с включением в курс параграфов, содержащих дополнительные сведения о движении твердого тела вокруг неподвижной точки (кинематические и динамические уравнения Эйлера), и главы, где излагаются основы метода обобщенных координат (уравнения Лагранжа) разнообразие требований, предъявляемых к курсу теоретической механики при подготовке специалистов разных профилей, заставляет уделить какое-то место этому материалу и в кратком курсе. Изложение в минимальном объеме элементарной теории гироскопа и таких актуальных в наши дни вопросов, как движение в поле тяготения (эллиптические траектории и космические полеты) и движение тела переменной массы (движение ракеты), в книге сохранено дополнительно написан параграф, посвященный понятию о невесомости. Представление о содержании книги в целом и порядке изложения материала дает оглавление.  [c.9]


Двухмерные и трехмерные движения рассматриваются в основном в теоретической гидродинамике. При этом движение жидкости представляется как непрерывная и последовательная деформация сплошной материальной среды. Его изучение имеет цель — выразить математически, в форме дифференциальных уравнений, основные кинематические и динамические характеристики как непрерывные функции координат и времени и может быть выполнено двумя методами Лагранжа и Эйлера.  [c.58]

Таким образом, описывая движение сплошной среды методом Эйлера, не интересуются судьбой каждой частицы, прослеживая ее движение при помощи уравнения Г =г( , Гд), но следят за каждой точкой пространства, куда подходят различные частицы со своими скоростями и, таким образом, формируют поле скорости у(/, г). Оказывается, как будет показано в дальнейшем, этой информации достаточно, чтобы сформулировать практически удобные дифференциальные уравнения, отражающие динамические законы движения среды.  [c.44]

Козлов, Валерий Васильевич (род. 1.01.1950) — русский математик и механик, академик РАН (с 2000 г). В цикле работ, объединенных в монографии Методы качественного анализа в динамике твердого тела (МГУ, 1980), доказал несуществование аналитических интегралов уравнений Эйлера-Пуассона, а также указал динамические эффекты, препятствующие интегрируемости этих уравнений — расщепление сепаратрис, рождение большого числа невырожденных периодических решений. Эти исследования закрыли проблему Пуанкаре, поставленную им в Новых методах небесной механики (т. 1), а также открыли новую эпоху в динамике твердого тела, в которой на первый план вышли методы качественного исследования, а не поиск частных решений заданной алгебраической структуры.  [c.26]

Идея декомпозиции движения далее использовалась Я. Бернулли, Германном, Вариньоном, Эйлером, Даламбером при решении динамических задач методами статики (сведение динамических уравнений к уравнениям равновесия).  [c.169]

Для консервативных систем статический и динамический критерии приводят к одним и тем же значениям критической нагрузки. В математическом отношении статический критерий приводит к хорошо изученной проблеме собственных значений для линейных дифференциальных уравнений. Используя статический метод, Эйлер впервые изучил устойчивость сжатого упругого стержня.  [c.348]

Возможность записать кинематические уравнения в виде уравнений Гамильтона интересна в тех случаях, когда динамические уравнения Эйлера можно проинтегрировать независимо от кинематических. Проекции мгновенной угловой скорости р, q, г будут известными коэффициентами в уравнениях (6.152). Записав кинематические уравнения в виде уравнений Гамильтона, мы можем применить некоторые методы аналитической механики, например метод Гамильтона — Якоби. Для приближенного интегрирования кинематических уравнений может оказаться полезным метод теории возмущений, основанный на вариации канонических постоянных.  [c.426]

Достаточно привести такой пример в задаче о движении твердого тела вокруг неподвижной точки в случае Эйлера находятся все интегралы динамических уравнений Эйлера и определяются все искомые неизвестные как функции времени. Но уравнение Гамильтона — Якоби в этом случае не интегрируется в квадратурах в углах Эйлера. Да и вообще в задаче о движении твердого тела вокруг неподвижной точки метод Якоби проходит только для случая Лагранжа это показано М. А. Чуевым, работа которого публикуется в данном же сборнике.  [c.8]


Эти девять кинематических уравнений (они называются обобщенными уравнениями Пуассона) вместе с тремя динамическими уравнениями Эйлера (14.60) составляют полную систему дифференциальных уравнений движения ИСЗ относительно центра масс. В этих уравнениях 1х> 1у, г и ц — известные постоянные величины, R и со — в общем случае известные функции времени, определяемые из кеплерова движения центра масс спутника, Q . Р > Yft (k=, 2, 3) —искомые функции времени. Не останавливаясь на методах решения этих уравнений (в общем виде они решаются только для частных случаев), заметим, что шесть первых интегралов нам известны —это равенства (14.56).  [c.339]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]

На рнс. 9.13 прелставлены ЛАЧХ и ЛФЧХ динамической жесткости нелинейной гидромеханической системы, вычисленные на ЭВМ с использованием записанных выше уравнений движения. Уравнения решались на основе метода численного интегрирования Эйлера для следующих типовых значений параметров Ш = 500 кг Р - 300 Н к,  [c.251]


Смотреть страницы где упоминается термин Эйлера метод уравнения динамические : [c.13]    [c.57]    [c.2]    [c.410]    [c.51]    [c.53]    [c.7]    [c.112]    [c.152]    [c.53]    [c.534]   
Теоретическая механика (1976) -- [ c.180 ]



ПОИСК



Методы динамического

Уравнение Эйлера

Уравнение динамическое

Уравнение метода сил

Уравнения Эйлера динамические

Эйлер

Эйлера динамические Эйлера

Эйлера динамические уравнени

Эйлера метод

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте