Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерения — Методы 62, 87, 93 — Определение валов

Проблема уменьшения износа трущихся деталей — одна из важнейших в машиностроении. Существует ряд методов определения износа деталей путем их взвешивания или измерения, однако они связаны с остановкой машин. Химический и магнитный методы нозволяют производить исследование износа без остановки машин, но их чувствительность и точность не всегда достаточны. Радиоактивные изотопы открывают новые широкие возможности прежде всего именно в исследовании износа и в нахождении путей повышения стойкости деталей машин, в частности различных валов, направляющих опор для вращательного и поступательного движения в станках, поршней и колец двигателей, зубчатых передач и др. Метод радиоактивных изотонов позволяет решить эту важнейшую проблему машиностроения гораздо точнее, быстрее и экономичнее.  [c.3]


Метод измерения больших диаметров опоясыванием заключается в измерении длины окружности при помощи ленточных мер. Из различных способов осуществления этого метода покажем лишь метод определения размера при помощи стальной ленты с припаянными угольниками (фиг. 175), которые служат для поддержания ленты в процессе измерения. При опоясывании вала между концами ленты образуется зазор а, измеряемый щупом.  [c.137]

На рис. 17.13 приведены статистические кривые диаметральных износов в двух взаимно перпендикулярных плоскостях рабочих втулок двухтактного судового дизеля 8ДР 43/61 с поперечной продувкой (диаметр цилиндра 430 мм, ход поршня 610 мм). Проставленные на горизонталях цифры указывают число втулок, по замерам диаметров которых были получены исходные данные. Средние скорости изнашивания на уровне ВМТ в плоскости вращения шатуна и по оси коленчатого вала почти равны. По мере продвижения вниз разность между износами перпендикулярно оси вала и по его оси увеличивается. Наибольший износ отмечается на перемычках выпускных окон. Это объясняется тем, что даже нри охлаждении перемычек трение на них происходит при полужидкостной смазке к тому же смазочное масло загрязнено частицами нагара, оседающими из отходящих газов. Частицы нагара и продукты износа при восходящем ходе поршня с перемычек попадают на втулку, в результате износ во всех поясах над окнами, за исключением самого верхнего, больше в плоскости вращения шатуна. Верхний пояс только в 51 % случаев имел больший износ по этому диаметру. В самом нижнем поясе оба износа одинаковы. Более точную картину распределения износа дают радиальные измерения с помощью специального нутромера и методы определения местного износа.  [c.265]

Кручение полого вала. Применение метода электрических аналогий к исследованию кручения полых валов показано на примере круглого вала с осевым отверстием квадратного сечения (фиг. IV. 23). Для определения величины функции г) выполнены два измерения на модели вала при следующих условиях на контуре (в процентах) первое измерение  [c.300]

Метод расчета указанных коэффициентов должен базироваться на изучении износов больших партий деталей автомобилей или агрегатов, поступающих в капитальный ремонт, и обработке полученных данных методами математической статистики. Сущность метода расчета коэффициентов заключается в следующем. Первоначально производится измерение размеров деталей автомобилей, поступающих в капитальный ремонт. Затем определяются величины износов деталей как разность х d — d для вала и л = — н для отверстий, где — начальные и — изношенные диаметры вала и отверстия. Полученные значения износов сводятся в ряды распределений, после чего рассчитываются стати- стические постоянные среднее арифметическое и среднеквадратичное значения износа. Если число измеренных деталей достаточно велико (не менее 100), то можно построить график полигона распределения износа и огиву и по ним определить коэффициенты годности и восстановления. На рис. 72 показан полигон распределения и огива износа шеек распределительных валов двигателей ЗИЛ-164, совмещенные в одном графике. Если величину допустимого износа шеек, равную по техническим условиям 0,06 мм, с ординаты снести на кривую огивы и из точки пересечения опустить перпендикуляр на ось абсцисс, то можно определить коэффициент годности 1 = 0,6 и коэффициент восстановления = 0,40. Аналогичным образом находят указанные коэффициенты и по другим деталям. Однако данный метод определения коэффициентов  [c.185]


Необходимо подчеркнуть, что достоверность и точность определения нагрузочных характеристики ГСП зависят от точности измерения эксцентриситета в ГСП. При принятом методе измерения эксцентриситета при вращении вала с помощью индикаторов, закрепленных на постаменте, на величину измеряемого эксцентриситета оказывает влияние деформация испытательного устройства от действующих нагрузок. Поэтому необходимо при проектировании устройства принять меры по увеличению его жесткости, а перед началом испытаний экспериментально установить погрешность в определении эксцентриситета, вносимую деформацией испытательного устройства. Это можно сделать, сравнивая величины перемещения корпуса, измеряемые по индикаторам, закрепленным на постаменте и непосредственно на корпусе.  [c.232]

Из-за пульсаций рабочего тела перед турбиной и особенностей рабочего процесса гидротормоза имеют место колебания частоты вращения ротора. Визуальными методами регистрации момента на.валу и частоты вращения ротора принципиально невозможно обеспечить синхронный замер этих параметров. Эти величины, измеренные в разные моменты времени, могут быть рассогласованными, что в конечном итоге приводит к увеличенной погрешности в определении к. п. д. ступени и сильному разбросу экспериментальных точек.  [c.127]

Таким образом, в результате выполнения цикла экспериментов усовершенствован и осуществлен в заводских условиях метод исследований износов основных деталей тракторного двигателя с помощью нейтронно-активационного анализа проб картерного масла разработан метод исключения погрешности измерения износов деталей двигателя по данным активационного анализа за счет учета уноса продуктов изнашивания деталей с угаром масла, исследовано развитие абразивного износа гильз, поршневых колец и вкладышей подшипников коленчатого вала двигателя, работавшего в условиях запыленности окружающего воздуха кварцевой пылью высокой дисперсности. На основании данных исследований получены графические зависимости износа основных деталей двигателя и вкладышей подшипников коленчатого вала из сплавов A M, Св. Бр., АО-20 от времени работы двигателя уменьшена вариация распределения результатов определения износов деталей, что обеспечивает снижение трудоем-  [c.71]

Датчики крутящего момента аналогичны датчикам силы и также основаны на методе упругого уравновешивания измеряемой величины. Они содержат упругий элемент, снабженный преобразователем угла его закручивания в электрический сигнал и токосъемником для передачи сигнала с вращающегося вала (рис. 24). Угол закручивания измеряют либо по деформации кручения, либо по углу поворота двух сечений упругого элемента, находящихся на определенном расстоянии друг от друга. Первый метод широко распространен, что является следствием стремления унифицировать методы измерений и аппаратуру. Тензорезистивные преобразователи позволяют достичь этого благодаря их универсальности. Однако сигнал наиболее отработанных и прецизионных металлических тензорезисторов мал по абсолютной величине и при передаче по токосъемнику подвержен влиянию помех. Кроме тензо-резисторных, применяют магнитоупругие МЭП [40]. Второй метод осуществляют с Помощью двух растровых дисков, расположенных рядом, но опирающихся на упругий элемент возможно дальше друг от друга. Взаимное угловое перемещение растров измеряют оптическим, индуктивным или другим МЭП, чувствительным к этому Параметру  [c.231]

Средние нагрузочные режимы в трансмиссии автомобиля фиксируют для определения дисперсии или расчета долговечности подшипников ходовой части автомобиля. Для этой цели удобно пользоваться электроимпульсными счетчиками, регистрирующими количество нагружений на заданных уровнях нагрузки. Иногда применяют упрощенные методы измерения мощности двигателя по разрежению во впускном трубопроводе или по часовому расходу топлива и угловой скорости коленчатого вала двигателя. Следует, однако, отметить, что эти упрощенные методы не обеспечивают необходимой точности эксперимента.  [c.91]


Иногда диаметры валов измеряют, обтягивая вал рулеткой, определяя при этом длину окружности. При диаметрах свыше 5000 мм для измерений применяют теодолит, установленный в какой-либо точке окружности детали, и определяют угол между концами мерной ленты определенной длины, обтягивающей часть окружности. Этот метод носит название метода дуги .  [c.289]

Валы диаметром до 1000 мм измеряют индикаторными скобаМи с ценой деления 0,01 мм, свыше 500 и 2000 мм—микрометрами с индикаторной головкой и установочной мерой. Иногда диаметры валов измеряют, обтягивая вал рулеткой, определяя при этом длину окружности. При диаметрах свыше 5000 мм для измерений применяют теодолит, установленный в какой-либо точке окружности детали, и определяют угол между концами мерной ленты определенной длины, обтягивающей часть окружности. Этот метод носит название метода дуги .  [c.124]

Для измерения валов применяется также и метод измерения по хорде и высоте сегмента. Определение диаметра вала (схема на фиг. 24) производится по формуле  [c.504]

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества вообще.  [c.130]

В ряде случаев, когда отсутствуют высокоточные средства и методы измерения, предназначенные для определения величины зазоров, характер соединений подшипников определяется косвенно, по усилию посадки колец. Это усилие измеряется с момента, когда наружное или внутреннее кольцо посажено на /з своей высоты, но не менее 2 мм, что необходимо для исключения влияния перекоса. За величину усилия посадки кольца принимается его наибольшее значение, соответствующее посадке на вал или в корпус до упора. Для подшипников нормальной точности максимальное усилие при посадке в корпус составляет 2 кгс. Величина минимального усилия определяется условием, чтобы подшипник не выпадал из отверстия в корпусе под собственным весом. При неподвижной посадке на вал усилие должно находиться в пределах 0,5—3,5 кгс.  [c.122]

Огранку с нечетным числом граней измеряют при установке вала в призме или кольце трехконтактным методом, при котором две точки профиля изделия соприкасаются с опорой, а одна точка — с наконечником прибора. При вращении вала в кольце (рис. 142,6) определяют значение огранки как наибольшую разность показаний индикатора. При определении огранки путем вращения вала в призме (рис. 142,в) используют зависимость, связывающую значение огранки с наибольшей разностью показаний индикатора А. Аог=Аж//С, где К — коэффициент воспроизведения огранки, числовые значения которого приведены в табл. И. Для измерений следует выбирать призму с углом, который обеспечивает наибольшее значение К.  [c.180]

Методы измерений подразделяют также на абсолютные и относительные, контактные и бесконтактные. При абсолютном методе измерения по показанию прибора определяют значение всей измеряемой величины (например, при измерении диаметра вала микрометром). При относительном (сравнительном) методе определяют значение отклонения измеряемой величины от меры, по которой установили прибор в нулевое положение (например, определение диаметра отверстия при помощи индикаторного нутромера).  [c.61]

Для определения по хорде высоте сегмента диаметров валов и отверстий свыше 1000 мм применяют специальный прибор Рис. 57. Косвенные (рис. 58). Опорные ролики 1 (рис. 58, а) раз- методы измерения мещают по краям основания прибора на рав- хо ди и  [c.99]

При косвенном методе измерения искомая величина определяется путем прямых измерений других величин, связанных с искомой определенной зависимостью. Например, для определения диаметра В большого вала его охватывают рулеткой и определяют длину окружности /. А из геометрии известно, что длина окружности I равна пО. Следовательно,  [c.77]

При непосредственном измерении осевые усилия, действующие на отдельные элементы ротора, передаются на вал агрегата и воспринимаются силоизмерителем. Основные трудности при этом возникают при передаче усилия или полученного сигнала с вращающегося вала на неподвижные элементы без потери точности измерения. Преимуществом метода является непосредственное измерение величины силы и простота обработки результатов измерения, недостатком — сложность выявления степени влияния элементов ротора на суммарную осевую силу. Затруднительно также выделить основные факторы, определяющие осевые усилия, и, следовательно, изменять их в нужном направлении. Наиболее часто непосредственное измерение осевого усилия на роторе используется для окончательной оценки суммарной осевой силы, передающейся на подшипник, подтверждения эффективности внесенных в конструкцию изменений и определения разброса осевых сил от экземпляра к экземпляру конкретного типа лопастной машины.  [c.95]

Косвенный метод основан на использовании датчиков для измерения сил резания и крутящих моментов, характеризующих состояние режущих инструментов. Типовые датчики — измерительное устройство силы резания с тензодатчиками (рис. 4.21, а), пьезоэлектрический датчик для измерения деформаций (рис. 4.21, б), магнитоупругий датчик для измерения деформаций (рис. 4.21, в), магнитоупругий трансформаторный датчик (рис. 4.21, г), магнитоупругий датчик для измерения крутящего момента (муфтового типа) (рис. 4.21, д), тензо-датчики для измерения крутящего момента (рис. 4.21, е), магнитоупругий датчик для измерения крутящего момента — для измерения магнитных свойств скручиваемого участка вала (рис. 4.21, ж), датчик для определения крутящего момента по силе тока двигателя привода (рис. 4.21, з).  [c.197]


В этом параграфе описан метод определения вкладов нескольких работающих машин в вибрационное поле нрисоединен-ных конструкций, когда ни один из источников не может работать автономно [58]. В этом случае, как это следует из результатов предыдущего параграфа, необходимы дополнительные сведения относительно частотных характеристик рассматриваемой системы. На практике трудно делать какие-либо достоверные оценки этих величин на отдельных частотах. Так, для двух одинаковых машин, установленных зеркально симметрично на некоторой конструкции, едва ли будут точно выполняться соотношения (4.35) ввиду небольших естественных отклонений от симметрии. Даже малое смещение частоты одного из местных резонансов несущей конструкции может значительно исказить равенство (4.35) в этой частотной области. Поэтому оценки переходных характеристик целесообразно делать в достаточно широких полосах частот, где местные отклонения частотных характеристик мало сказываются на поведении интегральных переходных характеристик. Кроме того, измерения в полосах частот мало чувствительны к небольшим изменениям режима работы машины (изменения нагрузки, случайные рхзмеиония частоты вращения вала и т. п.), в то время как они существенно сказываются на точности измерения спектральных характеристик, в частности взаимных спектральных плотностей машинных сигналов. По этим причинам в приводимом нин e методе разделеиня источников, основанном на оценках переходных характеристик между машинами, мы будем оперировать сигналами, получаемыми из реальных машинных акустических сигналов путем пропускания через фильтры с шириной полосы А(в, а характеризовать эти сигналы будем величинами, относящимися ко всей частотной полосе (среднеквадратичными значениями, коэффициентами корреляции). Вопрос о выборе полосы Асо будет рассмотрен в конце параграфа.  [c.128]

Метод определения мощности двигателя по его разгонной характеристике без нагрузки заключается в измерении интенсивности ускорения коленчатого вала при полной подаче топлива от минимально уствйчивой частоты его вращения на холостом ходу до максимальной. При этом нагрузка двигателя осуществляется за счет сил инерции его движущихся масс, являющихся для данного двигателя постоянной величиной. Эффективный крутящий момент (в ньютонах, умноженных на.метр) двигатеЛя при разгоне  [c.154]

В дизельных двигателях наблюдается несколько иная картина. В двигателях с очень высоким сжатием метод прокрутки дает завышенную величину общих потерь (в некоторых случаях на 15—20%) в связи с чрезмерной отрицательной работой, вызываемой потерей теплоты в стенке цилиндра во время ходов сжатия и расштфения. К сожалению, нельзя измерить площадь петли на индикаторной диаграмме, соответствующую отрицательной работе, так как она сильно зависит от точности определения верхней мертвой точки на диаграмме. Вообще говоря, поскольку это касается двигателей с воспламенением от искры, потери при проворачивании вала можно принять почти равными действительной величине суммарных механических и насосных потерь в рабочих условиях, но в случае двигателей с воспламенением от сжатия необходимо из полученных измерений при проворачивании вала вычесть от 0,14 до 0,35 кгс1см , в зависимости от размеров и типа двигателя [113].  [c.27]

Измерением называется нахождение значения искомой величины опытным путем с помощью спещ аль-ных технических средств (например, измерение размера вала микрометром). Все вопросы, связанные с измерениями, регламентируются стандартами Государственной системы обеспечения единства измерений (ГСОЕИ). Под единством измерений понимается такое их состояние, при котором результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью (гл. XI). Наука об измерениях, методах и средствах обеспечения их единства и способах достижения заданной точности называется метрологией. Термины и определения из области метрологии предусматривает ГОСТ 16263—70.  [c.73]

Наиболее простым и вместе с тем достаточно точным способом определения глубины выточки является измерение диаметров шейки вала н выточки штангенциркулем (точность измерения 0,02—0,05 Мм), микрометром (точность измерения 0,01 мм) или другим инструментом. Глубина выточки в этом случае определяется как полуразность двух замеров (вала и вы точки). При измерении выточек на деталях большого диаметра применение этого метода нево.зможно. Тогда прн-.ходнтся прибегать к использова.чию линейки штангенглубиномера нлн штангенциркуля (по схемам на поз. V и VI).  [c.212]

Характер изменения при холодной обкатке затрачиваедюй мощности, замеренной ваттметром, примерно соответствует характеру изменения величины микронеровностей на трущихся поверхностях. Величины микронеровностей определяют при этом профиломером. Метод определения режима обкатки дизеля измерением микрогеометрии цилиндровой втулки, колец, шеек коленчатых валов профиломером до начала обкатки и через равные интервалы времени в процессе обкатки до момента появления установившихся оптимальных неров-  [c.322]

Для контроля твердости поковок коленчатых валов из стали 45Х на Минском тракторном заводе успешно внедрен прибор с накладным датчи1шм НЧГ-1 [30], работающий по методу высших четных гармоник. Прибор применяется для контроля качества термической обработки в области температур отпуска свыше 600°С. Погрешность определения твердости не превышает 10%. Время измерения не более 10 с.  [c.82]

Измерение параметров концентрации железа в масле, мощности и частоты вращения коленчатого вала производилось экспрессными средствами. Контроль качества показаний электронного анализатора определения железа в масле выполнялся методами спектрофотометрического и полярографического анализов масла. При этом дополнительно определялась концентрация элементов медп, свинца и сурьмы в масле.  [c.144]

При назначении допусков часто исходят из табличных значений возможных зазоров или натягов в соединении, которые могут получиться при сочетании предельных размеров сопрягаемых компонентов. В этих случаях об--наруживаются противоречия, одним из разительных примеров которых может явиться тугая посадка, превращающаяся в подвижную посадку при сочетании наибольшего предельного размера отверстия с наименьшим предельным размером вала. Практическая оценка таких противоречий возможна только путём применения основных принципов теории вероятностей в области взаимозаменяемости. Этот метод, базирующийся на определении параметров рассеивания размеров сопрягаемых компонентов и на учёте вероятности различных значений зазоров и натягов, щироко применяется при разрешении всех вопросов, относящихся к взаимозаменяемости. С помощью этого же метода разрешается вопрос о допустимой погрешности отдельных звеньев механизма в зависимости от заданной, предельной погрешности всего механизма, о вероятностях различных значений зазоров и натягов в соединении, о вероятностях случаев нарушения взаимозаменяемости в зависимости от увеличения допусков отдельных компонентов, о вероятностях получения брака при выбранном технологическом процессе, о влиянии погрешностей измерений на отклонения размеров контролируемых объектов и т. д.  [c.2]


Преобразователи импульсов состоят из дисков А к Б, устанавливаемых на валы контролируемого механизма КМ, на наружной цилиндрической поверхности которых нанесен магнитный (никелево-кобальтовый) слой. На дисках записываются магнитные риски или же синусоидальные сигналы с определенным целым числом волн по окружности. В корпусах преобразователей укреплены магнитные головки МГ-А и МГ-Б, служащие для записи и считывания импульсов на дисках. Электронно-измерительное устройство (ЭИУ) представляет собой электронный фазометр, измеряющий сдвиг фаз между импульсами, поступающими с преобразователей. Чувствительность фазометра зависит от количества магнитных импульсов на диске А или Б и передаточного числа контролируемого механизма. Магнитоэлектрический кинема-тометр модели МЭК-1СО может работать, производя измерение абсолютным или разностным методом,  [c.273]

Это подтверждается результатами расчетов на ЭВМ Минск-22 применительно к обработке гладких валов диаметром 50 мм и длиной 300 мм из стали марки 45, инструментом, оснащенным твердым сплавом Т15К6 на предварительно настроенном токарном станке мод. 1К62. На рис. 15—17 приведены зависимости, характеризующие влияние величины снимаемого слоя Zi min шага измерения заданной глубины резания t и минимально допустимой глубины резания /тш на количество возможных вариантов обработки, время их определения и счета до нахождения оптимального маршрута. Незначительные затраты подтверждают эффективность расчетного метода.  [c.80]

Разностно-абсолютный метод состоит в том, что на входное 1 (рис. 35, б) и выходное 7 звенья контролируемого механизма установлены преобразователи импульсов, состоящие из дисков 2 и 5 и универсальных магнитных головок 9, 4 и 10, предназначенных для записи и считывания импульсов. Двухдорожечный диск 2 можно соединить с выходным звеном 7 механизма, тогда они будут вращаться вместе. Диск можно вращать и независимо от выходного звена с помощью электродвигателя 3. На никелекобальтовой поверхности диска 8 равномерно записано определенное число магнитных импульсов, которые с помощью магнитной головки 9 считываются, а с помощью магнитных головок 4 и 10 записываются на диске 2 по двум разным дорожкам. Если диск 2 вначале соединить с выходным звеном 7 и с помощью неподвижной магнитной головки 10 переписать импульсы с диска 8 на одну дорожку диска 2, а затем при неподвижном диске 2 (отсоединив его от выходного звена) импульсы с диска 8 записать с помощью поворотной головки 4 на вторую дорожку диска 2, то на двух дорожках этого диска получится запись противоположного направления кинематической погрешности механизма. Если теперь переключить схему на измерение и при помощи двигателя 3 диску 2 (свободно сидящему на валу) сообщить вращение с таким расчетом, чтобы число оборотов диска 2 значительно превышало (примерно в 1000 раз) число оборотов выходного звена 7 механизма, то импульсы с магнитных головок 4 я 10 будут поступать через дискриминатор 5 и фазометр 6, туда же поступят импульсы, посылаемые магнитной головкой 9 с диска 8. Сравнивая эти импульсы, определяют колебания фазы, характеризующие кинематическую и циклическую погрешности контролируемого механизма.  [c.114]

Метод торможения сводится к измерению крутяш,его момента на враш ающемся валу (шпинделе) и потому может быть применен только для определения главной составляющей силы резания. Измерение момента производят в два приема. Сначала производят само резание, регистрируя при этом с помощью электрического прибора величину мощности или тока, потребляемых из сети двигателем станка. Затем на шпинделе вместо обрабатьгеаемой детали закрепляется тормоз с силоизмерительным устройством. Не меняя скорости вращения шпинделя, тормоз нагружают до тех пор, пока амперметр (ваттметр), включенный в цепь питания двигателя, не станет показывать то же, что он показывал при резании. После этого по отсчету силоизмерителя вычисляют крутящий момент при торможении и, приравнивая его к действующему моменту в процессе резания, находят величину силы резания.  [c.9]

При И. д. в. с. применяются следующие приборы и методы измерений. Определение эффективной мощности 1) по непосредственному измерению крутящего момента на валу двигателя при помощи специальных тормозных устройств Прони, Фруда, Хинан-Фелла и др.  [c.203]


Смотреть страницы где упоминается термин Измерения — Методы 62, 87, 93 — Определение валов : [c.4]    [c.40]    [c.42]    [c.99]    [c.249]    [c.222]    [c.58]    [c.157]    [c.279]    [c.203]    [c.43]    [c.14]    [c.868]   
Справочник технолога-приборостроителя (1962) -- [ c.87 ]



ПОИСК



Валы Измерения

Измерение методы

Измерение — Определение

Измерения отверстий и валов больших размеров косвенные 374—376 — Метод опоясывания 374 — Определение

Измерения — Методы 62, 87, 93 — Определение



© 2025 Mash-xxl.info Реклама на сайте