Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия с матрицей из алюминия

ПОКРЫТИЯ С МАТРИЦЕЙ ИЗ АЛЮМИНИЯ  [c.215]

Разработан метод получения пропиткой композиционного материала на основе алюминия, упрочненного волокном из карбида кремния [113]. Особенностью изготовления этого материала является весьма высокая температура расплава, достигающая 1050° С, необходимая для обеспечения хорошей смачиваемости волокна расплавленным металлом. В результате контактного взаимодействия волокна с [расплавленным металлом при этой температуре его прочность снижается более чем на 30% (с 350 до 220 кгс/мм ). Для снижения температуры пропитки и улучшения смачиваемости было предложено наносить на волокна карбида кремния покрытия из никеля, меди или вольфрама. Применение покрытия позволяет снизить температуру пропитки до 700° С и сократить до нескольких минут время пропитки. Изготовленный по такой технологии материал с матрицей из алюминия (предел прочности 3 кгс/мм , относительное удлинение 40%), упрочненный 15 об. % волокна с покрытием, имел предел прочности 24 кгс/мм и относительное удлинение 0,6%.  [c.97]


Образцы композиционных материалов с матрицей из алюминия, легированного 12% кремния (№ 5, 10) и 35% магния (№ 6), упрочненной композиционной лентой из борного волокна, покрытого нитридом бора и пропитанного алюминием, имели малую прочность и низкий коэффициент эффективности матрицы. При этом коэффициент р образцов с алюминиевой матрицей, легированной 35% магния, имеющей более низкую температуру плавления, был несколько выше по сравнению с силуминовой матрицей. В образцах в состоянии после литья он достигал 0,75. Судя по уровню прочности этих образцов (№ б), матрица, заключенная между слоями ленты, имеющая после литья грубые дефекты, практически не несет нагрузки, и вклад в прочность композиции вносит только композиционная лента. Если учесть, что максимальная температура, действию которой подвергались волокна в процессе изготовления композиционного материала, не превышала 450°С и они были защищены от действия расплава матрицей из алюминия, входящей в состав композиционной ленты, то фактически все повреждения, которые можно было наблюдать на волокнах, являлись результатом процесса пропитки волокон расплавом при получении ленты. Это соображение подтверждается опытом по гомогенизации образцов с матрицей из алюминия с 35% магния после пропитки (партия № 7). Образцы, подвергавшиеся гомогенизации при температуре 400° С в течение 70 ч, показали прочность 70 кгс/мм , что на 15,5 кгс/мм выше прочности образцов в состоянии после литья. Повышение прочности является следствием улучшения свойств матрицы, повышения ее способности передавать напряжения от разрушенных волокон к более прочным волокнам. Гомогенизация повышает коэффициент эффективности матрицы при содержании 37 об. % волокна от 0,75 до 0,93, причем эти цифры характеризуют величину полного разрушения волокна, обусловленного всем технологическим циклом, включающим процесс нанесения покрытия из нитрида бора, получение ленты методом протяжки через расплав алюминия и процесс окончательной пропитки.  [c.111]

При изготовлении шкал с выпуклой гравировкой могут быть использованы в виде матриц обычные шкалы из латуни, покрытые слоем никеля, поверхность которого покрывается пассивной пленкой для легкости разъема погружением в раствор хромовых солей. При изготовлении тонкостенных труб правильной формы, отражателей, шкал и тому подобных изделий освобождение наращенных изделий или их отделение от матрицы происходит механическим путем. Форма сложных полых деталей не допускает их отделения путем простого разъема, и освобождение наращенного изделия может произойти только за счет разрушения матрицы. Таким образом, для отделения матриц из алюминия и его сплавов последние растворяются в растворителях, в которых само изделие не растворяется. Алюминий можно затем утилизировать, чего практически не делают из-за нерентабельности. Следовательно, в условиях производства полых деталей в большинстве случаев материал матрицы и некоторая часть материалов, применяемых для растворения, теряются. Преимуществом данного способа является быстрое и сравнительно недорогое изготовление из меди или других металлов мелких серий сложных полых деталей любой конфигурации и большой точности.  [c.160]


Следует отметить, что с удлинением времени наращивания для получения толстых медных осадков эти трудности в значительной степени увеличиваются, и предварительная подготовка к наращиванию, задачей которой является их уменьшение или устранение, должна производиться с особой тщательностью. Для наращивания толстых слоев меди при изготовлении сложных полых деталей могут быть успешно применены некоторые способы предварительной подготовки, ранее рекомендованные для покрытия алюминия и его сплавов. Так, для матриц из алюминия можно рекомендовать оксидирование в 55%-ном растворе фосфорной кислоты в течение 10 мин. при анодной плотности тока 1,22а/(3ж2 с последующим наращиванием меди на предварительно осажденную тонкую пленку никеля.  [c.161]

Рост зоны взаимодействия ограничивают с помощью ряда способов выбирая матрицу с крайне низким содержанием легирующих элементов, участвующих в реакции, что приводит к ее быстрому прекращению (например, матрица Ni —0,01% Ti, контактирующая с окисью алюминия [36]) уменьшая скорость диффузионного переноса путем контроля концентрации вакансий в продукте реакции [33] выводя один из растворенных в матрице элементов из области, расположенной перед фронтом распространения реакции [6]. Еще один подход связан с разработкой покрытий, переводящих систему из третьего класса в первый, например, защита бора нитридом бора, позволяющая получать композит путем пропитки расплавленным алюминием [9].  [c.29]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Для многих видов волокон разработаны технологические процессы нанесения покрытий для обеспечения лучшей смачиваемости и окалино-стойкости и оптимального взаимодействия волокна с матрицей. Борные волокна защищают от реагирования с расплавами титана и алюминия созданием на поверхности диффузионного барьера из карбидов кремния или бора. Волокна бора, защищенные карбидом кремния, называют борсик . Из-за высокой окислительной способности углеродных волокон на их поверхность наносят специальные покрытия, а процессы переработки осуществляют в защитной атмосфере.  [c.872]

В качестве полуфабриката для диффузионной сварки можно использовать ленты из борного волокна, покрытые нитридом бора и пропитанные расплавленным алюминием. Для получения прочности композита, соответствующей правилу аддитивности, необходима надежная механическая связь на границе раздела. Выполнение этого условия обеспечивает в эксплуатации материала передачу нагрузки от матрицы к волокну. Вместе с тем компоненты композиционного материала, как правило, взаимодействуют между собой. Диффузионные процессы уменьшают прочность упрочняющей фазы и в большинстве случаев приводят к образованию интерметаллидной прослойки в контакте волокна с матрицей. При достижении ширины интерметаллидной зоны 0,5—2,0 мкм композит перестает существовать. Под нагрузкой матрица не передает напряжение на волокно, идет разрушение интерметаллидов, образование и развитие трещин в волокне. Образование твердых растворов еще не приводит к коренному ухудшению свойств, С целью повышения жаропрочности и срока службы композиционных материалов на волокна наносят барьерные диффузионные покрытия. Покрытия могут исключать или значительно замедлять процессы взаимодействия материалов волокна и матрицы. Метод нанесения покрытия должен обеспечивать хорошую связь с волок-но 1, равномерную толщину покрытия и исключать пористость последнего. Другим способом подавления образования нежелательных фаз на поверхности раздела является использование в качестве матрицы сплавов, имеющих пониженную реакционную способность с упрочняющим материалом. С термодинамических позиций необходимо добиваться минимальной разности химических потенциалов компонентов композита.  [c.214]


До сих пор речь шла о требованиях, которым должна удовлетворять поверхность раздела для эффективной передачи нагрузки между матрицей и волокнами. Еще одно важное требование заключается в том, что появление поверхности раздела не должно уменьшать вклад волокон в общую прочность композита. Последнее требование, вообще говоря, предусматривает неизменность собственной прочности волокон при образовании композита, хотя и допускает изменение прочности извлеченных волокон. Это кажущееся противоречие может быть разрешено, если рассмотреть различие между поведением волокон и матрицы, взаимодействующих в композите, и их индивидуальным поведением. Например, титан и бор, как показано выше, образуют истинный композит, если реакция между ними не достигает критического уровня развития. Однако извлеченные волокна бора явно разупрочнены, так как берега трещин в образовавшемся при реакции покрытии из ди-борида титана больше не поддерживаются матрицей. В то же время собственная прочность сердцевины волокна, состоящей из бора, очевидно, не меняется. Хороший пример этого рассмотрен в гл. 4, где показано, что в полностью разупрочненных композитах алюминий — бор каждое волокно бора окружено толстым слоем диборида алюминия. Прочность извлеченных волокон меньше, чем в композите однако после стравливания слоя диборида алюминия с извлеченных волокон бора их прочность примерно удваивается, практически достигая первоначального значения.  [c.26]

Как с очевидностью следует из проведенного обсуждения, методу пропитки свойственны некоторые трудноразрешимые проблемы. При изготовлении композита пропиткой чрезвычайно важно обеспечить смачивание волокон расплавом. Существенное повышение температуры заливки (например, значительно выше 7пл алюминия) или использование поверхностно-активных веществ может привести к неполному смачиванию в практически важных системах. Вследствие применения указанных приемов происходит недопустимое ухудшение механических свойств волокна, а значит, и всего композита. Покрытия, в частности вольфрамовые, облегчают смачивание, однако при такой толщине, которая приемлема для тонких волокон, они не обладают достаточной долговечностью в контакте с жидким металлом. Волокна большого диаметра (>0,25 мм) в прочных матрицах, которые представляются практически интересными, механически повреждаются (двойникова-нием или скольжением) при охлаждении от температуры пропитки.  [c.333]

В работе [174] метод вакуумно-компрессионной пропитки применялся для получения композиционных материалов на основе алюминия, упрочненного нитевидными кристаллами сапфира. Нитевидные кристаллы с покрытием из титана толщиной 0,05 мкм, предотвращающим растворение волокон в алюминиевой матрице, и с нанесенным поверх первого покрытия слоем никеля толщиной 0,3 мкм для улучшения смачиваемости, прядением вручную собирали в жгуты диаметром 1,5—2,5 мм. Жгуты укладывали в форму, которую затем вакуумировали и нагревали до температуры пропитки 720° С. Пропитку осуществляли под давлением водорода 2 кгс/см . Полученные образцы испытывали при растяжении. Испытания показали большой разброс прочности. Максимальная прочность при температуре 500° С, равная —38 кгс/мм , была получена на композиции, содержащей 30 об. % нитевидных кристаллов сапфира.  [c.115]

Медные покрытия на упрочнители наносят как с целью получения композиционных материалов, в которых медь является матрицей, так и с целью получения тонких промежуточных покрытий, выполняющих различные функции. Лабораторные исследования показали, что медное покрытие на борных волокнах может быть эффективно использовано в качестве компонента, образующего с алюминием эвтектику при формировании методом диффузионной сварки изделий сложной формы из композиционного материала алюминий — борное волокно [185]. Медное покрытие позволяет значительно снизить температуру и давление, необходимое для получения плотного материала, с прочной связью между волокном и матрицей.  [c.183]

Эвтектическая диффузионная пайка боралюминия. Для соединения деталей из боралюминия между собой или с элементами конструкций из алюминиевых сплавов возможно использование способа эвтектической диффузионной пайки, заключающегося в нанесении тонкого слоя второго металла, образующего в результате взаимной диффузии эвтектику с металлом матрицы. В зависимости от состава матричного алюминиевого сплава могут быть использованы следующие металлы, образующие эвтектику серебро, медь, магний, германий, цинк, имеющие температуры образования эвтектик с алюминием 566, 547, 438, 424 и 382° С соответственно. В результате дальнейшей диффузии металла покрытия в основной металл концентрация его снижается, и температура плавления в зоне соединения постепенно повышается, приближаясь к температуре плавления матрицы. Таким образом, паяные соединения способны работать при температурах, превышающих температуру пайки. Однако необходимость строгого регламентирования толщины покрытия, а также чистоты покрытия и покрываемой поверхности, использование для получения таких покрытий метода вакуумного напыления делают этот процесс экономически нецелесообразным.  [c.192]

В книге [1, с. 144] приведены результаты исследования композиционных покрытий, упрочненных волокнами, и технологические аспекты их использования. Матрицей в этих покрытиях были алюминий, никель, медь упрочняющей фазой — волокна бора, карборунда, вольфрама и усы из карборунда.  [c.230]

Покрытия из карбида титана применяются и при изготовлении композиционного материала углеалюминия [234, 235]. Так как для хорошего смачивания расплавом алюминия углеродных волокон требуются температуры, приводящие к образованию карбида алюминия и разупрочнению углеродных волокон, барьерные покрытия из карбида титана на углеалюминии во многих случаях являются необходимым компонентом композиционных материалов. Покрытия из Ti не только способствуют улучшению совместимости графитовых волокон с алюминиевой матрицей, но и повышают термическую стабильность материала (рис. 91) [235].  [c.179]


Ионная металлизация. Используя этот метод, предварительно проводят плазменное травление поверхности углеродных волокон, а затем покрывают их поверхность алюминием [2]. Физическое осаждение позволяет нанести металлическую матрицу на каждое элементарное волокно в тонком пучке волокон. Из таких пучков формируют тонкие и гибкие листовые заготовки. Обработку поверхности осуществляют при температуре ниже точки плавления алюминия. Поэтому при ионной металлизации углеродные волокна высокопрочного типа могут взаимодействовать с алюминием, сохраняя высокую прочность. Метод не требует нанесения промежуточного покрытия, регулирующего реакционную способ- ность поверхности волокон, и позволяет непосредственно покрывать ее  [c.244]

Волокна углерода и бора используют обычно для армирования легких сплавов на основе алюминия и магния. Изделия из этих КМ характеризуются высокими прочностью и жесткостью и могут длительно эксплуатироваться при температурах 300. .. 450 °С. Волокна бора с барьерным покрытием из карбида кремния могут успешно эксплуатироваться при температурах 600 °С и даже до 800 °С при соответствующем материале матрицы.  [c.461]

Основная проблема при армировании алюминия волокнами бора — предотвращение взаимодействия бора с алюминием. Поэтому промышленный композиционный материал (ВКА-1), содержащий 50% волокон бора, был получен диффузионной сваркой пакета, составленного из чередующихся листов алюминиевой фольга с закрепленными на них слоями борных волокон. Покрытие борного волокна нитридом бора или карбидом кремния (волокно борсик) снижает его взаимодействие с алюминиевой матрицей даже в расплавленном состоянии. В этом случае открывается возможность получения композиционного материала жидкофазными методами.  [c.276]

Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]

Из табл. 23 видно, что наиболее высокую прочность (148кгс/мм ) имели образцы с матрицей из нелегированного магния. По расчету прочность сухого пучка при содержании 67 об. % волокна должна составлять 134 кгс/мм Таким образом, прочность образцов превышает прочность пучка на 10%, и в данном случае коэффициент эффективности матрицы равен 1,1. Введение в магний 9% алюминия приводит к сильной деградации волокон, и для партии образцов № 2 коэффициент р существенно меньше единицы. Однако если в эту же матрицу вводить борное волокно, предварительно покрытое слоем нелегированного магния, то, как это видно по результатам испытания партии кольцевых образцов № 8, коэффициент эффективности матрицы может быть значительно повышен. Полученные значения р = 1,16 свидетельствуют о том, что магниевое покрытие предохраняет бор от взаимодействия со сплавом, содержащим алюминий, а более прочная по сравнению с нелегированным магнием матрица вносит свой вклад в прочность композиции.  [c.110]

Оптимальные составы матриц, использующиеся в композициях с волокнами, имеющими диффузионные барьеры, отличаются от составов матриц, применяемых в композициях с проволоками без покрытий. Диффузионные барьеры выбираются для достижения термодинамической стабильности волокон с элементами матрицы из жаропрочных сплавов. Однако применение таких инертных покрытий может вызвать проблемы смачивания или обеспечения связи с матрицами из Hiaponpo4Horo сплава. Процессы изготовления композиций с вольфрамовой проволокой и никелевых сплавов, упрочненных волокнами из окиси алюминия (см. гл. 4 этого тома) не отличаются.  [c.261]

Морзе отмечал также, что семь первых металлов табл. 4 могут быть использованы в качестве барьерных покрытий при создании углеметаллических композиционных материалов с матрицей из ниобия, титана, вольфрама, нкелеза, алюминия и магния, являющимися сильными карбидообразователями (эта идея была использована позднее при разработке и исследовании композиционных материалов с алюминиевой и магниевой матрицами).  [c.359]

Изучение жаростойкости композиционных покрытий на основе никеля с оксидами редкоземельных элементов показало [131], что оксидная пленка на покрытиях в интервале температур 800—1100°С плотно прилегает к основе, а при температурах выше 1100°С отслаивается. Покрытие с ЬзгОз и N6203 при 1100—1200 °С разрушалось. Скорость окисления композиционных покрытий при температуре выше 900 °С больше, чем скорость окисления для N1, а по данным работы [131], скорость окисления КЭП никель — оксид титана выше скорости окисления N1 при 800—1100 °С. Снижение скорости окисления КЭП по сравнению со скоростью окисления контрольного покрытия наблюдалось при содержании частиц оксидов циркония, алюминия, тория и гафния. Повышение жаростойкости КЭП с матрицей из N1 при включении в него нитрида бора, талька отмечено в работах [130, 132, 133]. Окисление покрытий при 800— 1100°С проходит по закону, близкому к параболическому.  [c.89]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]


НОЙ системе серебро — окись алюминия. Окись алюминия не смачивается серебром и поэтому очень слабо упрочняет матрицу. Проблема несмачиваемости усов АЬОз расплавом серебра была решена предварительным напылением на них тонкого слоя металла (никеля) в вакууме. Впоследствии эту проблему обсуждали Ноуан, и др. [ 2в] в связи с разработкой покрытий для окиси алюминия с целью использования ее в матрице из никелевых сплавов. Было разработано несколько покрытий для AI2O3, но ни одно из них полностью не отвечало поставленной задаче, так как либо было нестабильным, либо вызывало разупрочнение волокна. Другой способ регулирования степени взаимодействия на поверхности раздела был предложен Саттоном и Файнголдом [45]. Никелевые сплавы, содержащие 1% различных активных металлов, сильно взаимодействовали с сапфиром. Существенно снижая содержание активных добавок, можно было в некоторой степени регулировать реакцию. Прочность связи была увеличена таким образом до  [c.127]

Алюминий — углеродное волокно. Основным технологическим приемом получения композиционных материалов алюминий — углеродное волокно, наиболее часто применяемым в настоящее время, следует считать пропитку каркаса из углеродных волокон расплавом алюминиевой матрицы. Однако наряду с этим методом некоторые исследователи применяли для изготовления композиций методом диффузионной сварки под давлением [1, 156, 176, 184]. Так, в работах [23, 156] описан технологический процесс получения композиционного материала методом горячего прессования в вакууме углеродных волокон различных марок, на которые методом разложения триизобутила было нанесено покрытие из алюминия.  [c.137]

Алюминий — углеродное волокно. При осаждении алюминпя на углеродные волокна в виде пряди, состоящей из тысяч мононитей покрытие, как правило, обволакивает периферийные пнти, закрывая доступ к внутренним. Получается, таким образом, неравномерное покрытие, которое не может быть использовано ни в качестве матрицы, ни в качестве технологического подслоя, улучшающего смачиваемость и прочность связи волокон с матрицей.  [c.180]

Другим путем совершенствования перспективных двигателей является применение в конструкции силовой установки новых материалов, и в том числе композиционных. Первоначально такие композиционные материалы, как борные и углеродные волокна в полимерной или дуралюминовой матрице, будут, вероятно, применяться в относительно холодных узлах и элементах двигателя (например, лопатки вентилятора и компрессора низкого давления, панели мотогондолы и т. д.). Затем композиционные материалы с более высокими характеристиками (волокна бора и окиси алюминия в матрицах из титана, никеля и ниобия, а также эвтектические сверхсплавы с направленной кристаллизацией) станут использоваться в горячих узлах и элементах двигателя. Применение стальных сплавов в конструкции двигателей будет постепенно уменьшаться, а вместо них увеличится доля сплавов на основе титана и никеля [13]. Многие иностранные фирмы предполагают также использование теплозащитных покрытий, жаростойких и легких керамических материалов в конструкции турбины двигателя, в частности для сопловых лопаток.  [c.219]

Композиционные материалы с алюминиевой матрицей армируют волокнами стекла, бериллием, высокопрочной стальной проволокой, карбидом кремния и нитевидными кристаллами различного типа. Композиции с алюминиевыми сплавами, армированными волокнами окиси кремния, изучены Кретли и Бейкером [8]. Композиции изготовляли путем операции высокоскоростного покрытия волокон алюминием из расплава с последующим горячим прессованием покрытых проволок. Композиции содержали приблизительно 50 об. % волокна, при этом достигалась прочность 0,85 ГН/м (91 кгс/мм ). Установлено, что прочность композиционного материала сильно зависит от параметров горячего прессования и, конечно, никакого повышения модуля упругости по сравнению с матрицей не было получено. Но ввиду общего превосходства системы алюминий — бор, а также из-за серьезной проблемы совместимости между волокном и матрицей с этой системой проводились небольшие по объему работы.  [c.45]

Хэрринг [35] показал, что прочность борного волокна при повышенных температурах значительно изменяется в зависимости от условий его изготовления и что предел прочности волокна при 1100° С может достигать 200 кгс/мм . Прочность матрицы и характер остаточных напряжений также влияют на прочность композиционного материала при нагреве. Это находит подтверждение в морфологии разрушения образцов при растяжении композиции борсик — алюминий, показанных на рис. 17. При комнатной температуре поверхность разрушения характеризуется очень малым количеством выдергиваний волокон из матрицы хорошо изготовленного образца. Волокна, которые выступают над средней пове рхностью разрушения, часто покрыты алюминием, поскольку поверхность раздела, образующаяся в процессе изготовления материала, более прочна по сравнению с матрицей.  [c.463]

Роль совместимости волокна с матрицей в условиях испытания на длительную прочность боралюминия была отмечена Брей-наном и Крейдером [13]. Проведенные при 400° С испытания образцов, упрочненных борными волокнами с покрытием из карбида кремния, показали, что они имели в 2 раза более высокую длительную прочность (за 100 ч) по сравнению с алюминием, упрочненным волокном бора без покрытия. При более коротких выдержках эффект покрытия не так значителен, как этого можно было бы ожидать в результате взаимодействия волокна с матрицей и его разупрочнения.  [c.474]

Чаще всего такие покрытия применяют в качестве тепловых и электрических барьеров, для защиты от износа и эрозии, с целью предохранения поверхности металлов от взаимодействия с газовыми и жидкими агрессивными средами, особенно при высоких температурах. Нанесение плотного покрытия на основе окиси алюминия на детали насосов (валы, сальники, втулки, крыльчатки) обеспечивает их твердость, химическую стойкость, низкий коэффициент трения, стойкость против термического воздействия. Напыление окиси циркония на матрицы для протяжки молибдена повыщает срок их службы в 5—10 раз. Плазменные покрытия из окиси алюминия и циркония увеличивают стойкость кокильных форм, изложниц, тиглей, литейных ковщей. Магнезитохромитовые сводовые кирпичи с плазменным покрытием из 2гОз толщиной 0,1—0,2 мм выдержали без разрушения 100 плавок, в то время как кирпичи без покрытия износились на 100 мм. С успехом применены плазменные покрытия для увеличения срока службы фурм доменных печей и труб для выдувки при горячем ремонте мартеновских печей. Поданным работы [121], керамические и керметовые покрытия применяют для защиты ответственных деталей воздушно-реактивных двигателей и ракет.  [c.343]

Электроосаждение ультрамикрокомпозиционных покрытий, образующихся непосредственно из прозрачных> электролитов или коллоидных растворов. Таким образом осаждаются нетускнеющие покрытия серебром, в которых 2-й фазой являются основные соединения бериллия, алюминия и других неосаждаемых металлов. Классические покрытия никелем, медью, железом также могут быть получены различных составов и свойств путем регулирования условий образования труднорастворимых оснований и солей соответствующего металла. Покрытия Аб—Не, N1—Ке, Ag—5Ь, N1—Мо, Си—2п и другие представляют многофазные покрытия с диспергированными в межзерениом пространстве матрицы частицами оксидов или оснований легирующего металла.  [c.324]

Судя ПО этим данным, наименьшая скорость реакции характерна для бора, далее следуют карбид кремния и окись алюмл-ния. Легирование матрицы может увеличивать или уменьшать скорость реакции. Если волокно состоит из одного элемента (бора), то количество образующегося продукта реакции, видимо, прямо пропорционально количеству прореагировавшего бора. Однако для волокон из соединений или волокон с покрытием эта зависимость не соблюдается. Небольшое количество элементов внедрения из соединений AI2O3 или Si переходит в матрицу и, растворяясь н ней, вызывает упрочнение и охрупчивание, и тем не менее скорость взаимодействия матрицы с такими волокнами выше, чем с борным волокном. Тресслер и Мур [46] отмечают, что в композите титан — окись алюминия допускается большая степень химического взаимодействия, чем в материалах титан — бор и титан — карбид кремния. Этот вопрос будет обсуждаться в гл. 4 в связи с анализом механических свойств при растяжении и в гл. 8, посвященной композитам с окисным упрочнением.  [c.125]

Получение композиционного материала методом горячего прессования в вакууме также описано в работе [178]. Для улучшения прочности связи матрицы с волокном и с целью исключения возможности образования на поверхности раздела углеродное волокно—алюминий карбида алюминия на поверхность углеродных волокон наносили слой меди толщиной 0,2—0,4 мкм. Исходные волокна имели предел прочности 200 кгс/мм , плотность 1,73 г/см средний диаметр отдельных волокон был равен 8 мкм. Материал получали в вакууме 2—5 10 мм рт. ст. при температуре 620—650° С и времени выдержки 30—120 мин прессованием пакетов из чередующихся слоев алюминиевой фольги и однонаправленного углеродного волокна с медным покрытием. Предел прочности композиций, содержащих 10—15 об. % волокон, был равен 23—32 кгс/мм , а композиций с 20—40 об. % волокон — 35—48 кгс/ мм . Микрорентгеноспектральное, электронно-микроскопическое исследования композиций, а также исследсвание в растровом электронном микроскопе не обнаружили повреждений углеродных волокон.  [c.138]


Прокатка. Процесс изготовления полуфабриката в виде леиты из композиционного материала на основе алюминия, упрочненного борным волокном, описан ниже (Патент Франции № 2133317, 1971 г.). Предварительную заготовку, состоящую из чередующихся слоев алюминиевой фольги и однонаправленного, уложенного с определенным шагом борного волокна, подвергали прокатке при температуре 600—650° С. Прокатку вели с небольшими степенями деформации за несколько проходов. Для улучшения прочности связи на границе раздела матрица — волокно на поверхность волокон рекомендуется наносить тонкое покрытие из вольфрама, никеля или меди. Полученный в виде ленты композиционный материал, содержащий около 50 об. % борного волокна, имел модуль упругости 25 ООО кгс/мм .  [c.145]

Метод прокатки применен для изготовления композиционного материала алюминий—углеродное голокно (патент США № 3571 901, 1971г.). Горячая прокатка заготовки такого материала, состоящей из алюминиевой матрицы и распределенного в ней углеродного волокна с покрытием из серебра, производилась при температуре солидуса алюминиевой матрицы.  [c.146]

Легирование матрицы в углеалюминиевых композициях с целью повышения коррозионной стойкости материала пока не дало положительных результатов. Вероятно, наличие в таких материалах гальванической пары алюминий—углерод является превалирующим фактором, определяющим поведение материала. В связи с этим в настоящее время ведутся поиски покрытий и технологии нанесения их на углеродные волокна. Такие покрытия, наносимые равномерно сплошным тонким слоем (из газовой фазы или химическим методом), имеют целью предотвратить непосредственный контакт между алюминием и углеродным волокном. В качестве таких покрытий рассматриваются, например, карбид титана, диборид титана, карбид кремния и др. (патент Швейцарии № 528596, 1970 г.).  [c.227]

По крайней мере некоторые редкоземельные металлы поддаются выдавливанию при нагреве до 480—900° с использованием загцитного покрытия из окиси алюминия или меди. И хотя отдельные металлы проявляют тенденцию к взаимодействию с медным покрытием, это взаимодействие можно сделать минимальным, если выдавливание производить при следующих температурах самарий 500°, гадолиний 650°, диспрозий 650 (зГ. Мягкий европий можно выдавливать через матрицы с малыми отверстиями.  [c.606]


Смотреть страницы где упоминается термин Покрытия с матрицей из алюминия : [c.127]    [c.449]    [c.128]    [c.95]    [c.365]    [c.216]    [c.1233]    [c.581]    [c.157]    [c.133]   
Смотреть главы в:

Неорганические композиционные материалы  -> Покрытия с матрицей из алюминия



ПОИСК



Алюминий покрытия

КЭП с матрицей алюминия



© 2025 Mash-xxl.info Реклама на сайте