Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диборид алюминия

До сих пор речь шла о требованиях, которым должна удовлетворять поверхность раздела для эффективной передачи нагрузки между матрицей и волокнами. Еще одно важное требование заключается в том, что появление поверхности раздела не должно уменьшать вклад волокон в общую прочность композита. Последнее требование, вообще говоря, предусматривает неизменность собственной прочности волокон при образовании композита, хотя и допускает изменение прочности извлеченных волокон. Это кажущееся противоречие может быть разрешено, если рассмотреть различие между поведением волокон и матрицы, взаимодействующих в композите, и их индивидуальным поведением. Например, титан и бор, как показано выше, образуют истинный композит, если реакция между ними не достигает критического уровня развития. Однако извлеченные волокна бора явно разупрочнены, так как берега трещин в образовавшемся при реакции покрытии из ди-борида титана больше не поддерживаются матрицей. В то же время собственная прочность сердцевины волокна, состоящей из бора, очевидно, не меняется. Хороший пример этого рассмотрен в гл. 4, где показано, что в полностью разупрочненных композитах алюминий — бор каждое волокно бора окружено толстым слоем диборида алюминия. Прочность извлеченных волокон меньше, чем в композите однако после стравливания слоя диборида алюминия с извлеченных волокон бора их прочность примерно удваивается, практически достигая первоначального значения.  [c.26]


Рис. 36. Рост диборида алюминия в композиции Л1 — 25% В при отжиге 500" С а — 0,Я ч 6 — 5 ч ч — 12 ч г — 165 ч Рис. 36. Рост диборида алюминия в композиции Л1 — 25% В при отжиге 500" С а — 0,Я ч 6 — 5 ч ч — 12 ч г — 165 ч
Из рассмотрения диаграммы равновесия А1—В следует, что растворимость бора в алюминии при 730 С равна 0,9% и сильно понижается с температурой. Согласно данным работы 174 ] реакция между бором и твердым алюминием с образованием диборида алюминия протекает в том же температурном интервале, что и прессование композиции и ее термическая обработка. Диборид алюминия прорастает в матрицу в виде игольчатых кристаллов, как это хорошо видно из рис. 36.  [c.82]

Начальная стадия процесса взаимодействия борных волокон с алюминиевой матрицей исследована в работе [68]. Установлено, что этот процесс протекает в две стадии. Вначале происходят разрушение и коагуляция пленки окиси алюминия, связанная, по-видимому, с диффузией кислорода в дальнейшем наблюдается химическое взаимодействие с образованием включений диборида алюминия, приводящее к резкому снижению как прочности композиционного материала, так и прочности связи волокон с матрицей.  [c.82]

Деформация до разрушения 74, 81, S) Диборид алюминия 58  [c.253]

Количество восстановителя. Опыты, проведенные с разным содержанием алюминия, подтвердили выводы работ [3, 4] и исследований, изложенных в данном сборнике, о том, что количество восстановителя является одним из наиболее существенных факторов, влияющих на фазовый состав продукта и извлечение бора. Увеличение в шихте доли алюминия способствует извлечению бора и образованию диборида алюминия.  [c.29]

Связь, обусловленная обменными химическими реакциями, является разновидностью только что рассмотренного типа. В этом случае общая химическая реакция может быть представлена последовательностью нескольких реакций, одна из которых будет контролировать скорость образования связи. При обменных реакциях один из элементов легированной матрицы или волокна обменивается местами с элементом, входящим в состав продукта реакции. Подобная связь устанавливется при взаимодействии борного волокна с титановой матрицей, легированной алюминием. При этом происходит обмен местами между титаном матрицы и алюминием в дибориде титана.  [c.59]


Как правило, легирующие элементы снижают константу скорости образования диборида титана, поэтому соответствующим легированием матрицы можно создать специальный сплав, в котором реакция с борным волокном будет заторможена. На графике рис. 24 иллюстрируется влияние некоторых легирующих элементов на константу k при температуре 760° С. Кремний и олово не влияют на константу k медь и германий понижают ее пропорционально их содержанию в твердом растворе. Сложное влияние оказывает молибден, алюминий и ванадий. По степени эффективности снижения константы на первом месте стоит ванадий, причем, как видно,минимальное значение константы достигается в сплаве Ti—40% V.  [c.68]

В алюминиевых, магниевых и титановых сплавах жаропрочность обеспечивается их армированием тугоплавкими непрерывными волокнами бора, карбида кремния, диборида титана и оксида алюминия. Особенностью таких волокнистых материалов является малая скорость разупрочнения во времени с повышением температуры.  [c.235]

На рис. 47 сопоставлены теплоты образования, температуры плавления и микротвердости боридов, карбидов, нитридов и окислов титана, циркония, гафния и тория. Можно видеть, что энергия образования соединения, отражающая энергию межатомных связей, повышается от боридов к окислам в соответствии с увеличением разности электроотрицательностей металла и элемента внедрения и возрастанием соответствующей доли ионности по Полингу. Это убедительно подтверждает ионный механизм образования соединений путем передачи валентных электронов атома металла в заполняющуюся р-оболочку неметаллического атома. Температуры плавления повышаются от диборидов к монокарбидам, а затем снижаются при переходе к мононитридам и двуокисям, оставаясь, однако, выше уровня 2500° С (кроме менее тугоплавких окислов гитана и алюминия). Микротвердость соединений снижается от 2500—3000 кгс/мм у боридов при переходе к карбидам, нитридам  [c.122]

Рис. 3.32. Откольная прочность керамических окиси алюминия [45, 46], диборида титана [47 — 49] и карбида кремния [47, 48, 50] нри воздействии импульсами ударного сжатия с интенсивностью ниже и выше динамического предела упругости а. Рис. 3.32. Откольная прочность керамических окиси алюминия [45, 46], диборида титана [47 — 49] и <a href="/info/30445">карбида кремния</a> [47, 48, 50] нри <a href="/info/184464">воздействии импульсами</a> ударного сжатия с интенсивностью ниже и выше динамического предела упругости а.
Дегидратация вяжущих веществ при нагревании вызывает появление пористости, что является второй их существенной особенностью и недостатком. Правда, пористость покрытий не мешает использованию их в качестве защитного средства от воздействия расплавов. В этом случае вводят наполнитель, который не смачивается расплавом. Например, при введении в алюмофосфатную связку диборида титана покрытие перестает смачиваться расплавленными цинком и алюминием.  [c.163]

Используя указанную установку при температуре 1350° С и давлении 100 МПа, порошки молибдена, твердого сплава ВКЮ, окиси алюминия и диборида циркония были спрессованы до плотности 99,8—99,9% от теоретической.  [c.281]

Этот тип связи встречается в системах псевдопервого класса при нарушении стабильности и переходе системы во второй или в третий класс. На рис. 2 видна окисная пленка на поверхности раздела в композите алюминий — бор, в котором с образованием диборида алюминия началось разрушение поверхности раздела. Эти представления о смешанных связях дополняет фотоснимок, полученный в сканирующем электронном микроскопе (рис. 3).  [c.87]

Ранее уже упоминался один из эффектов влияния легирующих элементов матрицы на взаимодействие с волокном. Он связан с оттеснением алюминия фронтом растущего диборида титана в матрице из сплава Ti-8Al-lMo-lV (рис. 1). Для проведения полного термодинамического анализа этого эффекта имеющихся данных недостаточно, однако из общих соображений можно предположить, что только дибориды циркония и гафния немного стабильнее ИВг- Дибориды элементов пятой группы периодической системы, видимо, менее стабильны, а дибориды элементов шестой группы еще менее стабильны. Действительно, энтальпия образования для диборидов элементов четвертой группы составляет 293—335 кДж/моль и уменьшается до 84—126 кДж/моль для элементов шестой группы —хрома и молибдена. Диборид алюминия также, по-видимому, значительно менее стабилен, чем диборид титана. Исходя из соображений, рассмотренных в работе Руди [36], можно заключить, что элементы, образующие нестабильные дибориды, будут вытесняться из диборидной фазы. Примером могут служить алюминий и молибден. На рис. 17 показана микроструктура диффузионной зоны в материале Ti-ЗОМо — В после выдержки при 1033 К в течение 100 ч. Объясняя строение зоны взаимодействия, Кляйн и сотр. [20] показали, что вытеснение молибдена из диборида титана приводит к появлению зоны В на внешней поверхности диборида титана (Л). При подсчете константы скорости реакции в работе [20] была использована общая толщина зоны взаимодействия, куда были включены слои А и В.  [c.115]


В отличие от гладкой поверхности раздела образца, отожженного в течение 0,5 ч, поверхность образца, отожженного перед испытанием в течение 150 ч, сильно изрыта и нерегулярна из-за взаимодействия волокна с матр Ицей (рис. 6). Диборид алюминия, образующийся на стороне поверхности раздела, обращенной к борному волокну, остается на волокнах, а AIB2, образующийся на стороне, обращенной к алюминию, частично разрушается и вклинивается в матрицу. Продукт взаимодействия на волокнах у поверхности раздела имеет грубую гранулярную структуру, наследуя очень нерегулярную поверхность волокна. В результате этого возникает много дефектов поверхности, которые, возможно, являются концентраторами напряжений и, конечно, могут способствовать уменьшению прочности при растяжении волокон и композита в целом. Один из таких дефектов указан на ри с. 6 стрелкой.  [c.150]

Первые попытки изготовить композит алюминий—бор путем пропитки расплавленным металлом были совершенно безуспешными. Кэймехорт [4], обобщив некоторые ранние исследования, привел примеры быстрого разупрочнения волокон бора в присутствии расплавленного алюминия. Волокно интенсивно взаимодействует с расплавом, при этом на нем растут ограниченные кристаллы диборида алюминия. Напротив, в композите, изготовленном путем горячего прессования при температуре ниже 366 К, следов взаимодействия не обнаруживается, хотя продолжительность прессования много больше считанных секунд, необходимых для проникновения расплавленного металла. Эти наблюдения привели Меткалфа к выводу, что окисные пленки сохраняются на поверхности раздела при диффузионной сварке, но разрушаются при пропитке расплавленным металлом [19].  [c.170]

Для проверки теории разупрочнения волокон из-за реакции на их поверхности или поверхности раздела был предложен эксперимент, в ходе которого волокна подвергали испытаниям непосредственно помеле извлечения, а также после полного стравливания продукта реакции—диборида алюминия — в азотной кислоте. Полученные данные по деформации разрушения приведены в табл. 5 и на рис. 16. Характеристики извлеченных волокон полностью воспроизводят три главных эффекта, обнаруженных при испытании композитов. Кроме того,,, все значения деформации разрушения, соответствующие переходу от исходного состояния к раз-уцрочненному, находятся в узком интервале. Факт восстановления прочности и деформации разрушения волокон после стравливания с их поверхности реакционного слоя, вероятно, наиболее убедительно свидетельствует об источнике их разупрочнения. Совокупность экспериментальных точек может быть описана кривой со  [c.174]

Экстремальный характер зависимости деформации разрушения от прочности, обнаруженный в композитах А16061—45% В после непродолжительных отжигов при 778, 811 и 833 К, связан с одинаковой степенью разрушения пленок на поверхности раздела и с образованием кристаллов диборида алюминия, прорастающих через исходную окисную пленку. Хотя процесс разрушения пленки охватывает крайне незначительную часть поверхности раздела, представляется, что взаимодействие такого рода благоприятно сказывается на продольной прочности.  [c.176]

Характеристика поверхностей раздела будет полней, если рассмотреть вопрос о природе сил связи между волокном и матрицей. Тип связи в композиционных материалах, естественно, зависит от технологии их получения. Например, если композиция алюминий—борное волокно получена заливкой пучка волокон расплавленным алюминием, то она относится к третьей группе, и связь в ней осуществляется в результате химической реакции борного волокна с расплавом алюминия волокно частично растворяется с образованием диборида алюминия AlBj. Однако если эта же композиция получена по оптимальной технологии горячего прессования, то она имеет все характеристики псевдопервой группы,  [c.58]

Избыток алюминия способствует образованию соединения А1Вг. Однако диборид алюминия образуется в количестве, не превышающем 5% от общего веса смеси боридов (даже при шихтовке на АШг).  [c.11]

Следует отметить, что при весе шихты более 300 2 получается продукт, содержащий относительно большее количество диборида алюминия. Это, по-видимому, можно объяснить уменьшением скорости охлаждения сплавов [4]. Со скоростью охлаждения связана и форма кристаллов АШ12.  [c.29]

Контактные процессы для металлических расплавов можно разделить на две группы матрица и арматура растворимы друг в друге, но продукты взаимодействия не образуются на поверхности раздела образуются новые продукты взаимодействия. Контактные процессы первой группы характерны для железоуглеродистых сплавов, для которых большое значение имеют диффузионные процессы углерода в железо. Во второй группе происходит образование новых оксидных соединений, карбидов, шпинелей. Формирование контактных зон зависит от скоростей реакций и диффузии элементов. Примерами контактных пар, дающих продукты взаимодействия, могут служить алюминий и титан, армированные борными волокнами, которые частично растворяются с образованием диборидов алюминия и титана — А1В2 и Т1В2.  [c.676]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]


В этом особом случае химическое взаимодействие может быть представлено в виде двух последовательных реакций, которые иногда практически неразличимы. Руди [36] широко использовал термин обменная реакция для описания процесса установления равновесия между двумя фазами в системе с тремя и более составляющими. Хорошим примером обменно-реакционной связи служит связь титано-алюминиевой матрицы с борным волокном. Вслед за реакцией образования диборида, содержащего титан и алюминий, происходит обмен между атомами титана матрицы и атомами алюминия диборида. На рис. 1 показаны полученные Блэкберном и др. [6] результаты микрорентгеноспектрального анализа состава слоев в зоне взаимодействия сплава Ti-SAl-lMo-lV с бором. В результате оттеснения алюминия растущим диборидам концентрация А1 в сплаве повышается с 8 до 14%. Согласно Кляйну и др. [20], оттеснение алюминия при обменной реакции приводит к уменьшению константы скорости реакции между бором и сплавом с 10% А1 при 1033 К от 5,2-10- до 3,4-10-7 см/с /.  [c.84]

При разработке совместимых с бором матриц должны быть учтены также следующие соображения. -Сплав должен быть стабильным, легко прокатываться в фольгу ужной для изготовления композита толщины (при использовании диффузионной сварки в твердой фазе), должен иметь изкую плотность и высокую прочность в условиях службы, а также обладать хорошей обрабатываемостью, необходимой для промышленного производства композита. Кляйн и др. [20] отметили, что легирование титановых сплавов теми элементами, которые снижают скорость реакции с борным волокном, вызывает переход титанового сплава в р-мо-дификацию, которая предпочтительна и при прокатке фольги. Максимальное содержание алюминия в р-сплаве ограничивается образованием а-фазы или фазы T13AI. На основе диаграммы состояния тройной системы Ti—V—А1 [10] за вероятный предел растворимости принято содержание алюминия 2,6%. Молибден, как и алюминий, оттесняется растущим диборидом. Влияние этого элемента было изучено более тодроб-но. В указанной выше работе [i20] отмечается, что при высоком содержании молибдена в дибо-ридной фазе образуется двуслойная структура (рис. 17). Для выяснения влияния содержания молибдена был исследован ряд р-сплавов. Полученные в этой работе константы скорости реакции k при 1033 К приведены в табл. 6. Чтобы определить вклад молибдена в k, была использована величина удельной скорости ре-  [c.133]

Легирование матрицы в углеалюминиевых композициях с целью повышения коррозионной стойкости материала пока не дало положительных результатов. Вероятно, наличие в таких материалах гальванической пары алюминий—углерод является превалирующим фактором, определяющим поведение материала. В связи с этим в настоящее время ведутся поиски покрытий и технологии нанесения их на углеродные волокна. Такие покрытия, наносимые равномерно сплошным тонким слоем (из газовой фазы или химическим методом), имеют целью предотвратить непосредственный контакт между алюминием и углеродным волокном. В качестве таких покрытий рассматриваются, например, карбид титана, диборид титана, карбид кремния и др. (патент Швейцарии № 528596, 1970 г.).  [c.227]

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая Kopo T j разупрочнения во времени (рис. 198, а) в повышением температуры.  [c.425]

Бориды. Эти соединения обладают металлическими свойствами, их электропроводность очень высокая (р - = (12 ч- 57) X 10 Ом-м). Они износостойки, тверды, стойки к окислению. В технике получили распространение дибориды тугоплавких металлов (Т1Ва, 2гВ2 и др.). Их легируют кремнием или дисилицидами, что делает их устойчивыми до температуры их плавления. Диборид циркония стоек в расплавах алюминия, меди, чугуна, стали и др. Его используют для изготовления термопар, работающих при температуре свыше 2000 °С в агрессивных средах, труб, емкостей, тиглей. Покрытия из боридов повышают твердость, химическую стойкость и износостойкость изделий.  [c.518]

В ранней работе Блэкберна и др. [2] показано, что в процессе реакции между бором и сплавом Ti — 8% А1 — 1% Мо -— 1% V алюминий оттесняется перед растущим слоем диборида. Этот результат подтвержден работой одного из отделов фирмы Inter-  [c.296]

Для армирования металлических КМ обычно используют непрерывные волокна углеродные (УВ), борные (В), оксида алюминия (AI2O3), карбида кремния (Si ), карбида бора (В4С), нитрида бора (BN), диборида титана (TiB2), оксида кремния (Si02). Также в качестве волокон применяют металлическую тонк>то проволоку, полученную методом волочения из стали, W, Ti, Мо и Be. Реже используют специально выращенные нитевидные кристаллы разных материалов.  [c.870]

Не менее важной областью применения тугоплавких соединений является изготовление нагревателей высокотемпературных печей, в частности из дисилицида молибдена — для эксплуатации на воздухе при температурах до 1700° С и из карбида ниобия — для работы в вакууме при температурах до 3000° С. Огнеупорные свойства тугоплавких соединений используются или могут быть использованы при изготовлении ответственных деталей насосов и каналов для транспортировки расплавленных металлов, футеро-вок каналов МГД-генераторов, теплообменных устройств, деталей аппаратуры для работы с парами металлов и расплавленными металлами (в т. ч. при производстве полупроводников методом плавки). Особенно высоки огнеупорные качества карбидов титана, бора, кремния, ниобия, дисилицида молибдена, диборида циркония, нитридов алюминия, бора, кремния, карбонитрида бора.  [c.6]

Результаты измерений волновых профилей в керамических окиеи алюминия, нитриде алюминия, дибориде титана, карбиде кремния и карбиде бора предетавлены также в работах [57 — 62]. В некоторых елучаях проводилиеь измерения одновременно продольных и поперечных напряжений в импульсах ударного сжатия как ниже, так и выше динамического предела упругости. В работах [60, 61, 63, 64] проведен металлографический анализ образцов после ударно-волнового воздействия, который показал, что, наряду с микротрещинами под действием ударной нагрузки в керамиках могут образовываться и дислокации, чем обеспечивается возможность пластического деформирования.  [c.108]


Смотреть страницы где упоминается термин Диборид алюминия : [c.133]    [c.69]    [c.253]    [c.87]    [c.178]    [c.182]    [c.297]    [c.205]    [c.765]   
Структура и свойства композиционных материалов (1979) -- [ c.58 ]



ПОИСК



Дибориды

Механизм разрушения пленки в системе алюминий—бор нестехиометричности диборида

Ми к ростр у кту диборида алюминия



© 2025 Mash-xxl.info Реклама на сайте