Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы алюминий — бор

Композиционные материалы алюминия — волокна бора характеризуются сочетанием высоких значений прочности, предела выносливости, модуля упругости с высокой работой разрушения.  [c.234]

НИИ — 26 кгс/мм Сопоставление режимов изготовления композиционных материалов алюминий — борное волокно и алюминий - борное волокно — стальная ироволока свидетельствует о том, что введение стальной проволоки не требует существенных изменений технологического процесса по сравнению с получением композиций алюминий - бор. По основным технологическим параметрам диффузионной сварки — температуре, давлению и времени выдержки процессы получения этих двух материалов совпадают.  [c.139]


ТИПИЧНЫЕ МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ АЛЮМИНИЙ - БОР . СОДЕРЖАНИЕ БОРА -SO об. %  [c.205]

КОМПОЗИЦИОННЫХ материалов алюминий — бор, производимых в США в промышленном масштабе.  [c.206]

Длительная прочность композиционных материалов алюминий—бор в поперечном направлении определяется главным образом прочностью материала матрицы, причем, поскольку в процессе испытания происходит отжиг матрицы, то прочность практически не зависит от того, в термообработанном или отожженном состоянии находится материал перед испытанием. Так, например, длительная 100-часовая прочность сплавов 6061 и 2024 при 300° С соответственно равна 2 и 3,6 кгс/мм .Длительная прочность композиционных материалов на основе этих матриц с 50 об. % волокна борсик при 300° С также соответственно равна 2 1И 3 кгс/мм [109].  [c.208]

Карбид кремния 38 Кинетика реакции титан — бор 294 титан — карбид кремния 295 Композиционные материалы алюминий — бериллий 45 алюминий — бор 421 алюминий — стальная проволока 45  [c.499]

Рис. 16. Свойства композиционных материалов бор-алюминия (а) и полиимидного боропластика (б) при комнатной температуре Г /г/ хсу прочность при одноосном нагружении в продольном направлении - прочность при - о 20 40 60 80 100 Рис. 16. Свойства композиционных материалов бор-алюминия (а) и <a href="/info/38689">полиимидного боропластика</a> (б) при комнатной температуре Г /г/ хсу прочность при <a href="/info/578364">одноосном нагружении</a> в продольном направлении - прочность при - о 20 40 60 80 100
Первой деталью, выбранной для этой программы, была хвостовая секция самолета Г-111, расположенная между двумя двигателями. Деталь имела следующие размеры полную длину 3764 мм (от отсека фюзеляжа, расположенного на отметке 610, отсчитываемой от носовой точки самолета, до отсека, расположенного на отметке 770), глубину 1219 мм, ширину 914 мм. Предназначенная для испытаний задняя (расположенная между отметками 673— 770 от носовой точки) секция этой детали имела длину 2464 мм. Передняя часть детали была спроектирована так, чтобы обеспечить разрушение в испытательной секции. Одной из задач программы являлось исследование возможностей применения трех типов перспективных композиционных материалов эпоксидных боро- и углепластиков и алюминия, армированного борными волокнами. Вследствие сокращения поставок борных волокон вскоре после начала выполнения программы основное внимание было уделено углепластикам. Для упрощения технологии и снижения стоимости оборудования форма поперечного сечения первой фюзеляжной детали была выбрана постоянной в отличие от основной алюминиевой конструкции, имеющей переменное сечение. Расчетные нагрузки определяли из типовых критических расчетных условий для каждого узла.  [c.159]


Образцы композиционных материалов с матрицей из алюминия, легированного 12% кремния (№ 5, 10) и 35% магния (№ 6), упрочненной композиционной лентой из борного волокна, покрытого нитридом бора и пропитанного алюминием, имели малую прочность и низкий коэффициент эффективности матрицы. При этом коэффициент р образцов с алюминиевой матрицей, легированной 35% магния, имеющей более низкую температуру плавления, был несколько выше по сравнению с силуминовой матрицей. В образцах в состоянии после литья он достигал 0,75. Судя по уровню прочности этих образцов (№ б), матрица, заключенная между слоями ленты, имеющая после литья грубые дефекты, практически не несет нагрузки, и вклад в прочность композиции вносит только композиционная лента. Если учесть, что максимальная температура, действию которой подвергались волокна в процессе изготовления композиционного материала, не превышала 450°С и они были защищены от действия расплава матрицей из алюминия, входящей в состав композиционной ленты, то фактически все повреждения, которые можно было наблюдать на волокнах, являлись результатом процесса пропитки волокон расплавом при получении ленты. Это соображение подтверждается опытом по гомогенизации образцов с матрицей из алюминия с 35% магния после пропитки (партия № 7). Образцы, подвергавшиеся гомогенизации при температуре 400° С в течение 70 ч, показали прочность 70 кгс/мм , что на 15,5 кгс/мм выше прочности образцов в состоянии после литья. Повышение прочности является следствием улучшения свойств матрицы, повышения ее способности передавать напряжения от разрушенных волокон к более прочным волокнам. Гомогенизация повышает коэффициент эффективности матрицы при содержании 37 об. % волокна от 0,75 до 0,93, причем эти цифры характеризуют величину полного разрушения волокна, обусловленного всем технологическим циклом, включающим процесс нанесения покрытия из нитрида бора, получение ленты методом протяжки через расплав алюминия и процесс окончательной пропитки.  [c.111]

Среди различных композиционных материалов с арматурой особое место занимает алюминий, армированный стальной проволокой, кремнеземными волокнами, волокнами бора, усами окиси алюминия (сапфира), углеродными волокнами и бериллиевой проволокой.  [c.124]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Как правило, матрицей является металл, а армирующим компонентом — волокно. Однако возможно, когда матрицей будет керамическая фаза. Например, композиционной будет корундовая матрица, армированная волокнами нитрида алюминия или бора. Известно много вариантов таких композиций. Свойства волокнистых композиций зависят от природы компонентов, их соотношения, технологии производства. Большое значение имеют свойства волокон, которые различаются по кристаллическому строению (моно- и поликристалличе-ские), размерам (непрерывные или прерывные — штапельные) волокна обычно оценивают по соотношению длины / к диаметру d. Известно, что волокна обладают исключительно высокой прочностью, приближающейся у ряда материалов к теоретической. В табл. 53 приведены некоторые свойства нитевидных кристаллических волокон.  [c.246]

Для упрочения композиционных материалов используют высокопрочную проволоку из стали, молибдена, вольфрама и других металлов и их сплавов волокна из бора, углерода, стекла, а также монокристаллы из оксидов, нитридов алюминия и кремния и других соединений.  [c.263]


Свойства в поперечном направлении и напряжения сдвига для композиционных материалов, армированных волокнами, значительно менее чувствительны к поведению матрицы, чем свойства в продольном направлении. Для композиционных материалов с пластичной металлической матрицей, армированной высокопрочными хрупкими волокнами, текучесть и пластическое течение матрицы являются основными свойствами, определяющими поведение композиции. Однако волокна вызывают значительное повышение модуля упругости композиционного материала, обычно в 2 раза для композиции бор — алюминий (50 об. % волокон бора, расположенных под углом 90° к оси армирования). Примерно так же увеличивается модуль сдвига. Поведение композиций с металлической матрицей, нагруженных в направлении, не соответствующем направлению армирования, рассмотрено в разделе IV, В.  [c.25]

B. Преимущества композиционных материалов системы алюминий — бор. ..........................420  [c.419]

В настоящей главе приведен обзор современных достижений в области создания композиционных материалов системы алюминий — борное волокно. Представлены основные сведения по разработке данной системы, обоснованию выбора материалов и наиболее важных технологических методов их изготовления, физическим и механическим свойствам материалов алюминий — бор и перспективам их применения в технике. Авторы стремились построить эту главу таким образом, чтобы она представляла интерес в первую очередь для инженеров-материаловедов и в меньшей степени освещала вопросы механики композиционных материалов, их конструирования и применения.  [c.420]

При разработке композиционных материалов системы алюминий — бор решаются следующие задачи  [c.421]

Композиционные материалы системы алюминий — бор сочетают в себе очень высохше прочность и жесткость, а также малую плотность, присущие борному волокну, с хорошей технологичностью и конструкционной надежностью матрицы из алюминиевых сплавов.  [c.421]

Добавка третьего компонента. При изготовлении композиционного материала возможно к бору и алюминию добавлять третий компонент, позволяющий повысить такие свойства, как поперечную прочность при высокой температуре, эрозионную стойкость и жесткость. В настоящее время наиболее часто применяют добавки титановой фольги (Ti — 6% А1—4% V или р—1П) и высокопрочной ракетной проволоки, такой, как N5-355. Благодаря тому, что условия сварки алюминиевой матрицы с этими материалами не отличаются от условий сварки алюминиевых слоев между собой, сравнительно просто вводить титановую фольгу и ракетную проволоку в заготовки и осуществлять сварку такого композиционного материала. Структура таких материалов показана на рис. 9. В предварительных заготовках возможна замена алюминиевой фольги на титановую, а борного волокна — на стальную проволоку. Типичные свойства проволоки предел прочности 380 кгс/мм при 20° С и 280 кгс/мм при 500° С, причем проволока существенно не отжигается в процессе горячего прессования при температурах 500—550° С.  [c.444]

Наиболее широко применяются литые композиционные материалы, состоящие из бора в виде тонких волокон н алюминия (В—А1), магния и др. При содержании в композиции до 50 % В литой композит имеет прочность на разрыв о = 1000- -1400 МПа и модуль упругости Е = = 210 000- 270 ООО МГ1а при. плотности р = 2,6 г/см II отличается низким коэффициентом линейного расшире-Н1 я (а = 2-Н5-10 град. ). Такое сочетание свойств для обычных литых сплавов недостижимо.  [c.284]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Величина производственных затрат и рыночная цена изделия из этого материала зависят от большого числа тесно переплетающихся факторов. Во-первых, стеклопластики обычно более дорогие материалы, чем их конкуренты. Например, типовой стеклопластик на основе полиэфирной смолы, упрочненный стекло-матами из тканой ровницы, стоит около 0,30 долларов за фунт, что значительно выше стоимости дерева, стали или бетона, но дешевле алюминия. Во многих случаях эта более высокая цена за фунт может быть частично компенсирована снижением массы. С другой стороны, высокопрочные композиционные материалы, упрочненные графитом, углеродом и бором, могут быть дороже алюминия в 100—200 раз. Относительно более высокая стоимость стеклопластиков отчасти компенсируется и более низкой оплатой труда рабочих, обусловленной, во-первых, небольшими трудозатратами (в чел.-ч), требуемыми для изготовления детали во-вторых, использованием малоквалифицированных рабочих. Например, в США рабочий, занятый изготовлением изделий из стеклопластиков, зарабатывает в час в 2 раза меньше вapщиIia или рабочего-прокатчика и меньше, чем квалифицированный плотник.  [c.253]

Минимальный порядок тензорного полинома критерия разрушения может быть явно определен из таких экспериментов, в которых критерий разрушения согласовывался бы с соответствующим разбросом характеристик материала. Экспериментально обнаружено, что для многих однонаправленных армированных композиционных материалов (например, углепластиков, композитов бор — алюминий) достаточно использовать первые два члена тензорного полинома.  [c.212]

Увеличение глубины диффузионного проникания до величин X 1000-10 см может все сильнее ухудшать усталостную прочность композита даже тогда, когда на поверхностях раздела отсутствуют бориды алюминия вероятно, следует ожидать, что влияние такой взаимодиффузии будет более вьсраженным в случае ориентации волокон под углом к оси нагружения. Для величин X < 250-10 см и поверхностей раздела, имеющих частично механический характер, усталостная прочность композита алюминия 6061-0 с бором заметно улучшается по сравнению с той, которой обладают современные композиционные материалы. Таким образом, металлургическая структура поверхностей раздела является переменчивым фактором, который играет важную роль для усталостной прочности этих композитов.  [c.435]


Теперь обратимся к экспериментальным результатам исследования влияния химического взаимодействия на прочность в продольном направлении композиций третьей и псевдопервой группы. В частности, рассмотрим, как влияют изотермические отжиги на прочность в продольном направлении композиций титан—борное волокно, титан—волокно карбида кремния. Все эти композиции относятся к третьей группе. Среди композиционных материалов псевдопервой группы рассмотрим алюминий—борное волокно, алюминий—карбид кремния или волокна бора с покрытием карбида кремния, магний—борное волокно.  [c.76]

Ступенчатое прессование. Разновидностью процесса прессования между обогреваемыми плитами пресса является ступенчатое прессование. Особенностью этого процесса является возможность получения полуфабрикатов в виде листов, полос, лент, профилей и др. большой длины из композиционных материалов на прессах с небольшими размерами прессующих плит. При этом процессе прессования пакета из заготовок композиционного материала большой длины осуществляется периодически вначале подпрессовывается участок, ближайший к одному из концов пакета, затем пакет передвигается между плитами пресса таким образом, что непосредственно между плитами оказывается часть ранее пропрессованного участка и еще не подвергавшаяся прессованию часть. Таким образом постепенно прорабатывается весь пакет. При ступенчатом прессовании только ширина изделия определяется шириной прессующих плит, длина же его практически не ограничена. Схема процесса ступенчатого прессования показана на рис. 62. Очевидна перспективность получения этим методом листов из композиционного материала алюминий — бор шириной 1,2 ми длиной до 9 м. Недостатком ступенчатого прессования является сравнительно невысокая производительность процесса.  [c.128]

Свойства волокнистых композиционных материалов, особенно их механические свойства, при одном и том же содержании упроч-нителя, сильно зависят от ориентации волокон в матрице и от угла между направлением действия приложенной нагрузки и ориентацией волокон [77 ]. Примером тому являются приведенные на рис. 80 кривые изменения предела прочности в зависимости от направления приложения нагрузки материала алюминий — 50 об. % борного волокна с тремя схемами укладки армирующих волокон и на рис. 81 кривые изменения модуля упругости и модуля сдвига одноосноармированного материала алюминий — 50 об. % борного волокна [10,30]. Значения предела прочности, модуля упругости и удлинения композиционного материала на основе алюминиевого сплава 6061, упрочненного волокнами бора и борсик, с различными типами укладки волокон, приведены в табл. 44, 45. Представленные на рис. 80, 81 и в табл. 44 и 45 данные свидетельствуют о широких возможностях изменения свойств композиционного материала в зависимости от типа укладки армирующих волокон при одном и том же их общем содержании. Это позволяет с максимальной степенью реализовать прочностные свойства композиционного материала в детали, сконструированной таким образом, что количество и направление укладки волокон учитывают ее напряженное состояние. Приведенные в табл. 45 данные позволяют также получить представление о прочностных свойствах при сжатии композиций алюминий — бор. 206  [c.206]

Комплексные методы. Характерной особенностью современных полимерных композиционных материалов (стеклопластиков, боро-пластиков, углепластиков, асбопластиков, пенопластов и др.) является существенная неоднородность структуры, обусловленная неравномерным распределением наполнителя и связующего, анизотропия свойств, существование специфических только для этих материалов различных дефектов, высокая удельная прочность, значительные величины звуко-, тепло- и электроизоляционных свойств. Поэтому выбор наиболее эффективного комплекса методов и средств неразрушающего контроля этих материалов с учетом особенностей их структуры и свойств представляется актуальной задачей. Перенесение эффективных неразрушающих методов и средств контроля для металлов на композиционные материалы будет неправильным в связи со специфичностью свойств и структуры композиционных материалов. Так для металлов (стали, алюминий, титан, сплавы и т. д.) наиболее эффективным являются высокочастотные ультразвуковые (I мГц и выше), электромагнитные, рентгеновские, тепловые методы. Однако для полимерных композиционных материалов данные методы не будут эффективными.  [c.103]

Рис. 2. Зависимости прочности от температуры для сплавов А1 (1) и композиционных материалов — уг-леалюминия (2) и бор-алюминия (3). Рис. 2. Зависимости прочности от температуры для сплавов А1 (1) и композиционных материалов — уг-леалюминия (2) и бор-алюминия (3).
Другим путем совершенствования перспективных двигателей является применение в конструкции силовой установки новых материалов, и в том числе композиционных. Первоначально такие композиционные материалы, как борные и углеродные волокна в полимерной или дуралюминовой матрице, будут, вероятно, применяться в относительно холодных узлах и элементах двигателя (например, лопатки вентилятора и компрессора низкого давления, панели мотогондолы и т. д.). Затем композиционные материалы с более высокими характеристиками (волокна бора и окиси алюминия в матрицах из титана, никеля и ниобия, а также эвтектические сверхсплавы с направленной кристаллизацией) станут использоваться в горячих узлах и элементах двигателя. Применение стальных сплавов в конструкции двигателей будет постепенно уменьшаться, а вместо них увеличится доля сплавов на основе титана и никеля [13]. Многие иностранные фирмы предполагают также использование теплозащитных покрытий, жаростойких и легких керамических материалов в конструкции турбины двигателя, в частности для сопловых лопаток.  [c.219]

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Пер-спективньши упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15 000-н28 000 МПа и Е = 400 4-600 ГПа.  [c.424]

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая Kopo T j разупрочнения во времени (рис. 198, а) в повышением температуры.  [c.425]

Материалы на никелевой основе армируют проволокой тугоплавких металлов и сплавов на основе вольфрама и молибдена, волокнами углерода и Si . Один из способов получения на основе никельхромо-вых сплавов композиций, армированных усами оксида алюминия, включает экструдирование пластифицированной смеси с последующим спеканием. Армированный никель изготовляют с применением электролитического нанесения покрытий на волокна карбида кремния или бора. Есть композиции на никелевой основе, армированные однонаправленными вольфрамовыми проволоками и сетками из них. Пакет, набранный из чередующихся слоев тонкой никелевой фольги и армирующей проволоки, подвергают горячему динамическому прессованию, способствующему приданию получаемому композиционному материалу повышенной механической прочности. Можно применить инфильтрацию каркаса из соответствующего волокна расплавом никеля.  [c.185]


Перспективными упрочнителями для волокнистых высокопрочных и высокомодульных композиционных материалов являются нитевидные кристаллы из оксвда и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеюшле а = 15000...28000 МПа и = 400...600 ГПа.  [c.235]

Композиционные материалы с титановой матрицей армируют с целью увеличения модуля упругости и повышения рабочих температур. Производство композиционных материалов с титановой матрицей связано с необходимостью нагрева до высоких температур, что резко активизирует способность матрицы к газопоглощению и взаимодействию со многими упрочните-лями (бором, карбидом кремния, оксидом алюминия и др.).  [c.278]

Сложной является проблема сварки композиционных материалов системы алюминий - бор между собой и с алюминиевыми сплавами типа Д16Т 1420. Объемное содержание нитей бора в этих материалах 30. .. 55 %, толщина 0,8. .. 2,0 мм, условный плакирующий слой 50. .. 200 мкм. Подготовку поверхности под сварку производят только химическим путем, включая операции травления, осветления и пассивирования. Наилучшие результаты достигаются при сварке вращающимся вольфрамовым электродом, на переменном токе в смеси аргона и гелия (20 80) при использовании технологических проставок из алюминиевых сплавов типа АМг, 1420, 1201.  [c.550]

Требования снижения металлоемкости конструкций при одновременном повышении прочности и надежности обусловливают разработку новых конструкционных материалов, среди которых необходимо выделить композиционные материалы с металлической матрицей. Учитывая широкое использование данного класса материалов при создании конструкций транспортного и химического машиностроения, ракетно-авиационной и космической техники, исследование процессов их разрушения представляет собой важную задачу механики конструкционного материаловедения. В ряду композитов с металлической матрицей особое место занимает бороалюминий — материал на основе алюминия, упрочненного волокнами бора. Бороалюминиевый волокнистый композиционный материал (ВКМ) обладает высокими удельными показателями прочности и жесткости, высокой стабильностью механических характеристик при повышенных температурах. Благодаря уникальным свойствам данного материала, его используют в несущих конструкциях космических аппаратов и авиационной техники [1, 2].  [c.224]

Высокий модуль упругости металлических матричных сплавов по сравнению с органическими материалами особенно важен в высокомодульных композиционных материалах. На рис. 1 сравниваются удельные модули упругости нескольких компоги ионных материалов, армированных волокнами. Отметим, что хотя композиционный материал бор — эпоксидная смола с однонаправленным расположением волокон имеет наиболее высокие значения удельного модуля упругости в направлении волокон, его обобщенный удельный модуль упругости (псевдоизотропный О 60°) значительно нин<е, чем у композиции Борсик — алюминий. Удель ный модуль сдвига также выше для металла, армированного волокнами. Коэффициент жесткости Eld) очень важен для дина-мических конструкций, таких, как лопасти вентилятора газовой турбины и крупногабаритные самолетные профили  [c.16]

На рис. 5 показаны рост трещин на волокне и развитие его повреждения непосредственно перед разрушением образца. Такое поведение композиции алюминий — бор типично для композиционных материалов с металличес1 ой матрицей, армированных хрупкими волокнами, имеющими меньшее удлинение в момент разрушения, чем металлическая матрица. Как указывалось выше, матрица передает нагрузку обратно разрушенному волокну посредством напряжения сдвига на поверхности волокна, распространяющегося от разрушенного конца.  [c.26]

Концентрация напряжений у концов разрушенного волокна также может снижать эффективную прочность композиции. В композиционных материалах трещина, распространяющаяся в направлении, перпендикулярном приложенной растягивающей нагрузке, может быть остановлена на поверхности раздела волокно — матрица вследствие того, что максимальное напряжение у вершины трещины в матрице приблизительно равно пределу прочности матрицы и мало по сравнению с напряжением разрушения волокна. Например, в композиции алюминий — бор напряжение у вершины трещины по мере ее распространения в алюминии равно 350 МН/м (35 кгс/мм ), а локальная прочность волокна обычно близка к 4,2 ГН/м (420 кгс/мм ). Этот механизм притупления вершины трещины изображен на рис. 12. В связи с этим концентрация н нряжений вокруг вершины трещины не приводит к нестабильному росту трещин в этой системе. Однако в системе титан — окись алюминия, где отношение прочности волокна к прочности матрицы 2 1, такая концентрация напряжений у вершины трещин может сильно охрупчивать или o Jraблять композицию.  [c.32]

Композиционные материалы с алюминиевой матрицей армируют волокнами стекла, бериллием, высокопрочной стальной проволокой, карбидом кремния и нитевидными кристаллами различного типа. Композиции с алюминиевыми сплавами, армированными волокнами окиси кремния, изучены Кретли и Бейкером [8]. Композиции изготовляли путем операции высокоскоростного покрытия волокон алюминием из расплава с последующим горячим прессованием покрытых проволок. Композиции содержали приблизительно 50 об. % волокна, при этом достигалась прочность 0,85 ГН/м (91 кгс/мм ). Установлено, что прочность композиционного материала сильно зависит от параметров горячего прессования и, конечно, никакого повышения модуля упругости по сравнению с матрицей не было получено. Но ввиду общего превосходства системы алюминий — бор, а также из-за серьезной проблемы совместимости между волокном и матрицей с этой системой проводились небольшие по объему работы.  [c.45]

ПОПЫТКИ упрочнить титан оказались безуспешными из-за его высокой реакционной способности, приводившей к сильному взаимодействию металла с бором, а также с другими волокнами. Внимание было переключено на алюминий как на матрицу для борных волокон, при этом были получены обнадеяшвающие результаты, а интерес к титану ослаб. Однако в связи с медленным решением проблем совместимости интерес к композиционным материалам с титановой матрицей возобновился. Были установлены причины ухудшения свойств, вызванного несовместимостью. В связи с этим научные представления о композиционных материалах с титановой матрицей, по-видимому, более обоснованы, чем для большинства других матриц и систем.  [c.278]

В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]

Среди композиционных материалов системы алюминий — бор были материалы с матрицей, подвергающейся упрочнению в результате старения. Сюда относятся матричные сплавы систем алюминий — медь — магний 2024, алюминий — магний — кремний 6061 и алюминий — цинк 7178. Влияние старения матрицы на свойства композиционного материала довольно слон ное из-за взаимодействия ее с волокном, в результате которого в материале имеются остаточные нанря>кения. Однако Саммером [83], Хэнкоком и Свэнсоном 133], Прево и Крейдером [70, 71] была показана полезность стандартной термообработки этих сплавов.  [c.452]

Многими исследователями было показано, что композиционные материалы с алюминиевой матрицей, упрочненной бором и стальной проволокой, имели лучшие свойства. В каждом случае стальная проволока располагалась под углом 90° по отношению к борному волокну. Кристиан [20, 21] и Крейдер и др. [50] показали, что прочность композиционного материала в поперечном направлении значительно увеличивается при добавке небольших количеств проволоки. Кроме того, было показано, что введение стальных волокон в наружные слои композиционного материала упрощает обращение с материалом и улучшает его способность к формообразованию. Такая наружная оболочка из стального волокна с алюминием повышает также прочность соединений между панелями из композиционных материалов, полученных точечной сваркой. На рис. 38 показан предел прочности при растяжении композиционного материала волокно борсик диаметром 100 мкм — коррозионно-стойкая сталь — алюминий в зависимости от температуры испытания. Добавка 6 об. % волокна из коррозионно-стойкой стали, уложенного под углом 90° к направлению укладки волокна борсик, увеличила более чем в 2 раза поперечную прочность композиционного материала во всем интервале исследованных температур. Укеличилась до 1,1% деформация до разрушения при поперечном растяжении, составляющая всего около  [c.490]



Смотреть страницы где упоминается термин Композиционные материалы алюминий — бор : [c.275]    [c.26]    [c.265]    [c.447]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.421 ]



ПОИСК



Композиционные материалы

Материалы Алюминий



© 2025 Mash-xxl.info Реклама на сайте