Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КЭП с матрицей алюминия

Интерпретация этих результатов осложняется тем фактом, что на поверхности раздела алюминия 6061 и бора существовала металлургическая связь (рис. 1, б), а между покрытием карбида кремния и матрицей алюминия 6061 (стрелка на рис. 1, в) — механическая связь. Эти композиты были получены методом диффузионной сварки в течение 1 ч приблизительно при 475 и 554 С соответственно. Полагают, что низкая малоцикловая усталостная прочность у композитов, волокна которых имеют покрытия, связана с поведением покрытия Si [23]. Это покрытие обладает предпочтительным направлением кристаллографического роста (111) и вытянутой кристаллической структурой, оба они ориентированы перпендикулярно оси волокна (рис. 1, в). Таким образом, ось волокна, возможно, является направлением относительно низкой прочности покрытия и последнее может служить причиной плохого усталостного поведения в малоцикловой области.  [c.401]


Процесс окисления имеет,кроме того, две характерных особенности. Первая особенность состоит в том, что во всех случаях металл насыщается атмосферным азотом. С определенного момента на микрошлифах наблюдается значительное количество нитридов алюминия в центральной части проволоки, которые отделены от окалины кольцом,-свободным от нитридов (рис. 42). Образование нитридов приводит к обеднению матрицы алюминием. В ходе окисления происходит укрупнение нитридов и расширение свободного от них кольца металла. Вторая особенность состоит в том, что на многих сплавах отдельные дефектные участки появляются с первых часов окисления. Цепочки окислов алюминия, часто совместно с нитридами алюминия, обнаруживаются при анализе, в  [c.69]

Композиционные металлические материалы. Эти материалы представляют собой композиции из высокопрочных волокон и основы (матрицы) — из мягких металлов, в частности алюминия.  [c.37]

Матрицу в металлических композитах изготовляют из легких сплавов, в частности алюминия.  [c.37]

В структуре чугуна, получаемого литьем или подвергаемого отжигу, должно быть 10 - 30% феррита. Такой чугун применяют для изготовления фрикционных дисков, антифрикционных втулок и направляющих втулок клапанов, поршневых и уплотнительных колец, матриц для холодного прессования алюминия, крышек и корпусов газосборника реактивных двигателей.  [c.67]

Прямые эксперименты на алюминии показали, что зародыши рекристаллизации формируются только в таких областях, которые в процессе деформации оказались разориентированными относительно окружающей матрицы на углы не менее 15—20°. Такие разориентировки создаются за счет интенсивного множественного скольжения. Наиболее благоприятными местами для этого являются прежде всего тройные стыки границ зерен (а), границы зерен вообще, реже переходные полосы  [c.313]

Исследовано [55] насыщение расплава чистого алюминия (99,999%) водородом на плотность слитков диаметром 50 и высотой 160 мм, закристаллизованных под атмосферным давлением и поршневым давлением до 200 МН/м . Сплав выплавляли в высокочастотной индукционной печи с графитовым тиглем и продували водяным паром при его расходе 1—2 л/мин. Затем газонасыщенный расплав заливали в металлическую матрицу, нагретую до 150° С, в которой он затвердевал под атмосферным или поршневым давлением. Установлено, что макроскопические дефекты в слитках, содержащих водород, уменьшаются по мере увеличения давления и почти полностью исчезают при давлении 50 МН/м . При этом с увеличением давления (свыше 20 МН/м ) значения плотности выравниваются по высоте слитка, приближаясь к максимальным.  [c.42]


В качестве матрицы используются и полимеры, и металлы. Из полимерных смол применяются эпоксидные и полиамидные группы, а из металлов — алюминий и никель. Выбор матрицы зависит от применения композита. Например, волокнистые композиты на основе эпоксидной смолы хорошо работают при низких температурах, а композиты с металлической матрицей — при высоких температурах.  [c.64]

Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]

Некоторые наиболее интересные композиты условно отнесены к первому классу. К нему принадлежат такие системы, как алюминий—бор, алюминий — нержавеющая сталь и, возможно, алюминий — карбид кремния. Композитные материалы этой группы обычно получают путем диффузионной сварки в твердом состоянии. Хотя, согласно термодинамическим данным, матрица и упроч-  [c.15]

До сих пор речь шла о требованиях, которым должна удовлетворять поверхность раздела для эффективной передачи нагрузки между матрицей и волокнами. Еще одно важное требование заключается в том, что появление поверхности раздела не должно уменьшать вклад волокон в общую прочность композита. Последнее требование, вообще говоря, предусматривает неизменность собственной прочности волокон при образовании композита, хотя и допускает изменение прочности извлеченных волокон. Это кажущееся противоречие может быть разрешено, если рассмотреть различие между поведением волокон и матрицы, взаимодействующих в композите, и их индивидуальным поведением. Например, титан и бор, как показано выше, образуют истинный композит, если реакция между ними не достигает критического уровня развития. Однако извлеченные волокна бора явно разупрочнены, так как берега трещин в образовавшемся при реакции покрытии из ди-борида титана больше не поддерживаются матрицей. В то же время собственная прочность сердцевины волокна, состоящей из бора, очевидно, не меняется. Хороший пример этого рассмотрен в гл. 4, где показано, что в полностью разупрочненных композитах алюминий — бор каждое волокно бора окружено толстым слоем диборида алюминия. Прочность извлеченных волокон меньше, чем в композите однако после стравливания слоя диборида алюминия с извлеченных волокон бора их прочность примерно удваивается, практически достигая первоначального значения.  [c.26]

Рост зоны взаимодействия ограничивают с помощью ряда способов выбирая матрицу с крайне низким содержанием легирующих элементов, участвующих в реакции, что приводит к ее быстрому прекращению (например, матрица Ni —0,01% Ti, контактирующая с окисью алюминия [36]) уменьшая скорость диффузионного переноса путем контроля концентрации вакансий в продукте реакции [33] выводя один из растворенных в матрице элементов из области, расположенной перед фронтом распространения реакции [6]. Еще один подход связан с разработкой покрытий, переводящих систему из третьего класса в первый, например, защита бора нитридом бора, позволяющая получать композит путем пропитки расплавленным алюминием [9].  [c.29]


Рис. 6.25. Ударная вязкость металла, армированного волокном (волокно — борволокно, покрытое карбидом кремния, матрица — алюминий). 1 — образец LT 2 — образец ТТ 3 — образец TL. Рис. 6.25. <a href="/info/64486">Ударная вязкость металла</a>, <a href="/info/560240">армированного волокном</a> (волокно — борволокно, <a href="/info/135409">покрытое карбидом кремния</a>, матрица — алюминий). 1 — образец LT 2 — образец ТТ 3 — образец TL.
Коррозионную стойкость конденсатов йу-А1 на воздухе при повышенных твыпературах изучали с помощью термогравиметрического анализа. Установлено, что введение в медную матрицу алюминия значительно повышает термическую устойчивость системы.  [c.16]

По степени отрицательного влияния на технологическую пластичность марганецсодержащих сталей легирующие элементы можно расположить в следующей последовательности бор, ниобий, титан, алюминий, молибден, ванадий, кремний. Бор является горофильным элементом и образует легкоплавкие боросодержащие фазы по границам зерен. Ниобий и молибден, являясь сильными ферритообразующими элементами, приводят к образованию б-фер-рита. Кроме этого их охрупчивающее влияние сказывается через упрочнение матрицы. Алюминий, ванадий и кремний облегчают образование б-феррита в стали. Титан способствует образованию в марганцевых сталях легкоплавких эвтектик.  [c.299]

Исходные тонкие пластинки алюминия, покрытые окисной пленкой, вытачиваются, деформргруются, дробятся окисная пленка разрывается. После соответствующих нагревов и достаточной степени деформации структура САПа выглядит в виде сплошной светлой матрицы алюминия, в которой вкраплены мельчайшие частички окиси алюминия. По своим размерам они приближаются к тем частицам, которые выпадают в термически упрочняемых алюминиевых сплавах из пересыщенного твердого раствора в процессе старения.  [c.41]

Наибольшее внимание привлекают алюминиевые сплавы, армированные волокнами из бора, углерода, нержавеющей стали и бериллия титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин я компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупроч ненного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).  [c.640]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Для изготовления лазерных элементов обычно используют бледно-розовый рубин, концентрация хрома в котором порядка 0,05 % (мае.). Введение ионов хрома слегка искажает кристаллическую решетку матрицы, поскольку они имеют радиус 0,065 нм, несколько больший радиуса иона алюминия (0,057 нм). Эти искажения, во-первых, вызывают появление внутренних напряжений в монокристаллах рубина и ограничивают предельнуьэ концентрацию ионов хрома в них и, во-вторых, приводят к смещению иона хрома вдоль пространственной диагонали в октаэдре из ионов кислорода. С ростом концентрации ионов хрома параметры элементарной ячейки кристаллической решетки увеличиваются. Поскольку монокристаллы рубина анизотропны, их свойства зависят от ориентации образца.  [c.74]

Перовскиты. Монокристаллы с ромбической структурой типа перовскита образуются из бинарных смесей оксидов редкоземельных элементов и алюминия, взятых в соотношении 1 1 (см. рис. 39—41), и имеют общую формулу А +В +Оз, где А — иттрий или ионы редкоземельных элементов, а В — ионы А1, 5с, 1п, Сг или Ее. Несколько особую роль играет скандий, который может входить в матрицу как на места ионов А +, так и на места ионов В +. Ромбическая решетка перовскита характеризуется параметрами а, Ь и с, которые в монокристаллах А10з соответственно равны 0,5176, 0,5307 и 0,7355 нм. Близость значений параметров а и Ь элементарной ячейки способствует двойникованию и проявлению ферроэластичных свойсть монокристаллов, т. е. самопроизвольной или под действием нагрузки их переориентации. Чем ближе значения параметров о и Ь, тем сильнее проявляются эти свойства. В обычных условиях эти соединения являются парамагнетиками, однако при низких температурах (порядка 4 К) происходит их антиферромагнитное упорядочение.  [c.77]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]


Ниже приведены механические свойства закристаллизованной под давлением 90 MH/м углеродистой стали с 0,20—0,24% С, которую перед заливкой в матрицу прессформы не раскисляли или раскисляли алюминием в количестве 0,01—0,02% (по массе)  [c.44]

Легирование скандием упрочняет алюминий благодаря присутствию очень мелких дисперсных частиц А1з8с (которые полностью когерентны с матрицей), а также образованию иолигонизированной структуры с очень мелкими субзернами. При содержании 0,55 % 8с временное сопротивление достигает 300 МПа, а предел текучести 280 МПа.  [c.186]

В США проведены больщне исследования по получению материалов, в которых нитевидные кристаллы использованы для армирования металлической матрицы. При этом использовались главным образом сапфировые усы и различные материалы матрицы серебро [201], алюминий [202], ниобий [211] и др. Считают, что детали из таких. материалов могут найти применение в космических кораблях и управляемых ракетах [202].  [c.109]

Промышленный вычислительный томограф ВТ-300 максимальный диаметр контроля изделий из легких материалов — 300 мм возможен контроль изделий из алюминия и его сплавов диаметром до 140 мм, а также жаропрочных и аустенитных сталей диаметром до 20 мм возможность масштабирования, т. е. повышения разрешающей способности системы с уменьшением диаметра максимальное разрешение по ЛКО 0,5% матрица изображения 256X256 элементов толщина слоя 2—10 мм, источник излучения УРП 300/10-Т с рентгеновской трубкой типа 1,2—ЗБПМ-300 с фокусами 1,5X1,5 мм и 4,0X4,0 мм и соответственно = 4 мА и 7aniax= 10 мА,  [c.471]

Промышленный вычислительный томограф ВТ-1000 максимальный диаметр контролируемого изделия 1000 мм приведенная толщина контролируемого изделия 450 мм объекты контроля — цилиндрические и конические изделия сложной внутренней структуры материал изделия — графит, углерод — углеродистые конструкции максимальный диаметр изделий из алюминия, магния и других легких сплавов 180 мм максимальное разрешение по ЛКО 0,5% матрица изображения 256X256 элементов толщина слоя  [c.471]

Содержание дисперсной фазы в композиционных покрытиях №—СеО и N1—2г0а составляет от 10 до 15 об. %, толщина покрытий достигает 6—7 мкм при длительности опыта 4—5 ч. Покрытия Си—А120з содержат 10—30 об.% окиси алюминия при толщине покрытий 1.0—1.5 мкм. Все полученные покрытия характеризуются равномерным распределением частиц второй фазы в металлической матрице. Включение диэлектрических окисных частиц повышает электросопротивление металлических покрытий.  [c.28]

Приведенные ниже примеры свидетельствуют о том, что взаимодействие оксида лантана с фосфор- и кремнийсодержащими компонентами растворов 1-8, 1-8 при температурах 800, 1200 °С препятствует получению стеклофазы заданного состава и изменяет фазовый состав наполнителя. Например, в композиции Ьа. Оз—раствор 1-8 после обжига при 800 °С в течение 1.5 ч появляется значительное количество мета силиката лантана, о чем свидетельствуют линии /н=2.89, 2.80, 2.00, 1.90 А на рентгенограмме (рис. 1). Обжиг опека при температуре 1200 °С в течение 5 ч приводит к уменьшению интенсивности линий, свидетельствующем об уменьшении в опеке количества кристаллической фазы. Растровые снимки композиции в отраженных электронах (рис. 2, а) подтверждают гетерогенное строение опека в однородном поле матрицы расположены белые кристаллы размером 6x2 до 28x9 мкм, не соответствующие размеру частиц исходного оксида лантана — 0.1—0.13 мкм. На рис. 2, б—3 элементы стеклосвязки — кремний и алюминий — находятся  [c.65]

Как было показано выше, появление в структуре сплава фаз или сегрегаций легирующих элементов (или примесных атомов), обладающих более отрицательным потенциалом, чем матрица, приводит после нарушения пассивности к созданию более отрицательного компромиссного потенциала и усилению анодного тока. Скорость репассивации активной поверхности замедляется. Пример этого—сплав ВТ5-1, состаренный при 500°С в течение 10—100 ч. Вязкость разрушения в коррозионной среде этого сплава в состаренном состоянии 40,3 — 46,5 МПа /м. Излом темноюерый— характерный для коррозионного растрескивания. Однако достаточно этот же сплав подвергнуть закалке с 900—1000°С, обеспечивающей скорость охлаждения в интервале 400—600°С более 50 град/мин, как сплав становится нечувствительным к коррозионному растрескиванию. Величина вязкости разрушения поднимается до 93 — 108,5 МПа y/lA. Излом образцов становится светлым, как у металла, нечувствительного к коррозионному растрескиванию. В этом случае за счет устранения в структуре сегрегатов или упорядоченного а-твердого раствора (по алюминию) снижается величина анодного тока, уменьшается анодное растворение, создаются более благоприятные условия для репассивации поверхности после нарушения защитной пленки, в результате чего уменьшается возможность проникновения и диффузии водорода.  [c.71]

Усиление склонности к растрескиванию при повышении содержания алюминия в сплаве ранее объясняли возникновением в структуре металла концентрационных неоднородностей, имеющих иной, чем у матрицы, электрохимический потенциал. Однако имеется и другой аспект влияния алюминия, который более приемлем при горячесолевом растрескивании он связан с изменением структуры оксидных пленок, как известно, оксиды титана имеют существенно больший удельный объем и меньший коэффициент линейного расширения, чем титан. При наличии когерентной связи оксидов с титаном в пленке возникают напряжения сжатия, а в зоне перехода от оксидов к основному металлу — напряжения растяжения. Возникновение разрушений в пленке в этих условиях зависит  [c.77]

В настоящей главе мы в общих чертах наметим теорию больших деформаций материалов, состоящих из жестких волокон и матрицы из более податливого материала, таких, например, как резина, армированная нейлоновыми нитями, или пластичный алюминий, армированный жесткими металлическими волокнами. Нашей целью не является определение механических свойств композита по известным свойствам его компонентов, мы также не будем заниматься другими важными проблемами, в которых необходимо отличать частицы материала матрицы от частиц волокон вместо этого мы постараемся найти механическое поведение композиционного материала в целом, рассматривая его как сплошную среду, свойства которой определяются из макроопыта.  [c.288]

Термин значительное изменение химического состава относится также и к малым изменениям, рассмотренным, в частног сти, Грэхемом и Крафтом [20] в связи со стабильностью эвтектических композитов. В этом случае изменения растворимости возникают из-за различия в кривизне поверхностей раздела, как эта следует из соотношения Томсона — Фрейндлиха. Аналогичным образом такому определению удовлетворяют и малые содержания растворенных примесей, ускоряющих рекристаллизацию, что наблюдалось, например, в системе u(Ni)—W [28, 34]. Сюда может быть включен и случай сегрегации элементов на поверхности раздела например, как показано Саттоном и Файнголдом [37], цирконий переходит из никелевого сплава к поверхности раздела с окисью алюминия, что усиливает их связь. Под это определение попадают и связи типа окисных, предложенные для систем псев-допервого класса. Эти связи реализуются между последовательно расположенными фазами от матрицы через поверхность раздела матрица — окисел, окисную пленку и поверхность раздела окисел— упрочнитель к упрочнителю.  [c.18]

Высказывалось предположение, что возможны случаи, когда предпочтительна слабая поверхность раздела. Согласно Куку и Гордону [12], поле напряжений у вершины развивающейся трещины включает не только главные напряжения, стремящиеся раскрыть трещину в направлении ее распространения, но и напряжения, стремящиеся раскрыть ее в перпендикулярном направлении. Значит, эти дополнительные напряжения могут раскрывать плоскости с ослабленной связью, пересекаемые магистральной трещиной. Эм бери и др. [17] применили эти представления к случаю разрушения слоистых композитов. Они показали, что в пакете стальных листов распространение трещины задерживается процессом расслаивания это приводило к важному результату — снижению температуры перехода от вязкого разрушения к хрупкому более чем на 100 К. Эти исследования были продолжены Олмондом и др. [2], которые получили ряд новых данных об указанном типе структур, тормозящих распространение трещины. По очевидным соображениям аналогичный подход применим и к волокнистым композитам этот вопрос рассмотрен в гл. 7 в связи с проблемой разрушения. Значительные объемы композита, расположенные по обе стороны от магистральной трещины, могут быть охвачены одновременным действием различных механизмов разрушения, а в таких случаях, как показали Эдсит и Витцелл [1] на примере композитов алюминий — бор, вязкость разрушения композита может превосходить вязкость разрушения металлической матрицы.  [c.25]


В других случаях реакции на поверхности раздела приводят к необратимому снижению собственной прочности упрочнителя. Петрашек [28], например, наблюдал уменьшение собственной прочности волокон вольфрама по мере развития рекристаллизации, на которое заметно влияют определенные легирующие элементы медной матрицы. Саттон и Файнголд [37] отмечали, что активные легирующие элементы никелевой матрицы снижают прочность волокон окиси алюминия в композите, изготовленном путем пропитки. Эти наблюдения легли в основу предложенной ими теории прочности композитов, рассмотренной в гл. 8. Предполагается, что разупрочнение окиси алюминия обусловлено огрублением рельефа поверхности, а в этом случае удаление продукта реакции не восстанавливает прочности, хотя химическая  [c.26]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]


Смотреть страницы где упоминается термин КЭП с матрицей алюминия : [c.429]    [c.636]    [c.305]    [c.71]    [c.66]    [c.67]    [c.164]    [c.102]    [c.61]    [c.67]    [c.157]    [c.14]    [c.17]    [c.17]    [c.26]    [c.33]   
Неорганические композиционные материалы (1983) -- [ c.215 , c.216 ]



ПОИСК



Бора волокна переход от прочность в матрице алюминия

Покрытия с матрицей из алюминия

Формование композиционных материалов бор—алюминий, бор—эпоксидная смола, углеродное волокно—эпоксидная смола на матрице



© 2025 Mash-xxl.info Реклама на сайте