Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия нитридом бора

Образцы композиционных материалов с матрицей из алюминия, легированного 12% кремния (№ 5, 10) и 35% магния (№ 6), упрочненной композиционной лентой из борного волокна, покрытого нитридом бора и пропитанного алюминием, имели малую прочность и низкий коэффициент эффективности матрицы. При этом коэффициент р образцов с алюминиевой матрицей, легированной 35% магния, имеющей более низкую температуру плавления, был несколько выше по сравнению с силуминовой матрицей. В образцах в состоянии после литья он достигал 0,75. Судя по уровню прочности этих образцов (№ б), матрица, заключенная между слоями ленты, имеющая после литья грубые дефекты, практически не несет нагрузки, и вклад в прочность композиции вносит только композиционная лента. Если учесть, что максимальная температура, действию которой подвергались волокна в процессе изготовления композиционного материала, не превышала 450°С и они были защищены от действия расплава матрицей из алюминия, входящей в состав композиционной ленты, то фактически все повреждения, которые можно было наблюдать на волокнах, являлись результатом процесса пропитки волокон расплавом при получении ленты. Это соображение подтверждается опытом по гомогенизации образцов с матрицей из алюминия с 35% магния после пропитки (партия № 7). Образцы, подвергавшиеся гомогенизации при температуре 400° С в течение 70 ч, показали прочность 70 кгс/мм , что на 15,5 кгс/мм выше прочности образцов в состоянии после литья. Повышение прочности является следствием улучшения свойств матрицы, повышения ее способности передавать напряжения от разрушенных волокон к более прочным волокнам. Гомогенизация повышает коэффициент эффективности матрицы при содержании 37 об. % волокна от 0,75 до 0,93, причем эти цифры характеризуют величину полного разрушения волокна, обусловленного всем технологическим циклом, включающим процесс нанесения покрытия из нитрида бора, получение ленты методом протяжки через расплав алюминия и процесс окончательной пропитки.  [c.111]


Ранее [219] говорилось о методе изготовления ленты из борного волокна, покрытого нитридом бора и пропитанного расплавленным алюминием. Такая лента в дальнейшем может применяться в качестве предварительной заготовки при получении композиционного материала методом диффузионной сварки. К такого же рода полуфабрикатам относятся одиночные волокна или пучки из нескольких волокон, полученные пропиткой расплавленным матричным металлом. В качестве примера таких заготовок можно привести кварцевые волокна, пропитанные алюминием [121], волокна бора, пропитанные алюминием [97].  [c.125]

Покрытие нитрид бора — полимер  [c.48]

В качестве полуфабриката для диффузионной сварки можно использовать ленты из борного волокна, покрытые нитридом бора и пропитанные расплавленным алюминием. Для получения прочности композита, соответствующей правилу аддитивности, необходима надежная механическая связь на границе раздела. Выполнение этого условия обеспечивает в эксплуатации материала передачу нагрузки от матрицы к волокну. Вместе с тем компоненты композиционного материала, как правило, взаимодействуют между собой. Диффузионные процессы уменьшают прочность упрочняющей фазы и в большинстве случаев приводят к образованию интерметаллидной прослойки в контакте волокна с матрицей. При достижении ширины интерметаллидной зоны 0,5—2,0 мкм композит перестает существовать. Под нагрузкой матрица не передает напряжение на волокно, идет разрушение интерметаллидов, образование и развитие трещин в волокне. Образование твердых растворов еще не приводит к коренному ухудшению свойств, С целью повышения жаропрочности и срока службы композиционных материалов на волокна наносят барьерные диффузионные покрытия. Покрытия могут исключать или значительно замедлять процессы взаимодействия материалов волокна и матрицы. Метод нанесения покрытия должен обеспечивать хорошую связь с волок-но 1, равномерную толщину покрытия и исключать пористость последнего. Другим способом подавления образования нежелательных фаз на поверхности раздела является использование в качестве матрицы сплавов, имеющих пониженную реакционную способность с упрочняющим материалом. С термодинамических позиций необходимо добиваться минимальной разности химических потенциалов компонентов композита.  [c.214]

Особое место в рассматриваемом классе соединений занимают нитриды бора и алюминия, которые в сравнении с карбидами обладают большими частотами собственных колебаний. Таким образом, по данному критерию из группы соединений XY в качестве покрытий с высокой излучательной способностью могут быть использованы карбиды и нитриды бора и алюминия. Наилучшим ионом Y является углерод. Для выбора иона X воспользуемся выражением (3-1), из которого следует, что при постоянной величине массы иона Y частоты собственных колебаний будут большие у ионов X с меньшей массой, т. е. у кремния, скандия и титана. По поводу карбида скандия укажем, что он легко подвергается гидролизу, что является значительным недостатком при использовании его в качестве покрытия.  [c.77]


Рост зоны взаимодействия ограничивают с помощью ряда способов выбирая матрицу с крайне низким содержанием легирующих элементов, участвующих в реакции, что приводит к ее быстрому прекращению (например, матрица Ni —0,01% Ti, контактирующая с окисью алюминия [36]) уменьшая скорость диффузионного переноса путем контроля концентрации вакансий в продукте реакции [33] выводя один из растворенных в матрице элементов из области, расположенной перед фронтом распространения реакции [6]. Еще один подход связан с разработкой покрытий, переводящих систему из третьего класса в первый, например, защита бора нитридом бора, позволяющая получать композит путем пропитки расплавленным алюминием [9].  [c.29]

Это подтверждается и практикой. Лучшие результаты по стойкости и работоспособности показывают шлифовальные круги, изготовленные из агрегированных металлизированных алмазных (или из кубического нитрида бора) порошков, представляющих собой частицы разветвленной формы, состоящие из нескольких (до 10) зерен, покрытых карбидо-металлическим сплавом и спаянных между собой.  [c.128]

В результате многочисленных исследований/были созданы устойчивые барьерные покрытия на борном волокне, совместимые с алюминием и его сплавами. Покрытия Si толщиной 6-—8 мкм обеспечивают защиту борного волокна от взаимодействия с жидким и твердым алюминием. Еще большей стабильностью в расплаве алюминия обладают покрытия из нитрида бора BN. Борные волокна с покрытием BN можно заливать при температурах до 800° С, и после нескольких минут контакта с расплавом не происходит их разупрочнения. Однако композиционный материал А1—B/BN имеет низкую сдвиговую и поперечную прочность в силу слабой связи между компонентами.  [c.71]

Поверхности раздела 58, 66, 72 Покрытия барьерные 71 карбида бора 72 нитрида бора 71 плазменные 170, 174 Правило смеси 107 Прессование  [c.254]

Изучены свойства бронзовых покрытий, выделенных из суспензии, содержащей хлориды олова и меди, а также частицы a-BN [37]. В результате моделирования были получены зависимости коэффициента трения и и переходного электрического сопротивления Ra (Ом) от плотности тока 1к (А/м ), pH суспензии, концентрации нитрида бора С (кг/м ) и температуры электролита t ГС)  [c.86]

Самосмазывающиеся покрытия. Для предотвращения схватывания (приваривания) серебряных электрических контактов при их непрерывном взаимном скольжении необходима твердая смазка, например графит. Обычно электрические контакты изготовляют методами порошковой металлургии спеканием порошков серебра и графита с низким коэффициентом трения, (0,07—0,13). Но целесообразнее применять КЭП, содержащие в качестве второй фазы графит, дисульфид молибдена или нитрид бора [23].  [c.195]

Композиционное плазменное покрытие (КПП), состоящее из 60% никеля, 35% меди и 5% нитрида бора, предложено использовать как антифрикционное [151],  [c.248]

Основная проблема при армировании алюминия волокнами бора — предотвращение взаимодействия бора с алюминием. Поэтому промышленный композиционный материал (ВКА-1), содержащий 50% волокон бора, был получен диффузионной сваркой пакета, составленного из чередующихся листов алюминиевой фольга с закрепленными на них слоями борных волокон. Покрытие борного волокна нитридом бора или карбидом кремния (волокно борсик) снижает его взаимодействие с алюминиевой матрицей даже в расплавленном состоянии. В этом случае открывается возможность получения композиционного материала жидкофазными методами.  [c.276]

К твердым СОТС относятся неорганические материалы (тальк, слюда, графит, бура, нитрид бора, дисульфиды молибдена, вольфрама и титана, сульфат серебра) органические соединения (мыло, воск, твердые жиры) металлические пленочные покрытия (медь, латунь, свинец, олово, барий, цинк).  [c.458]

Сравнение полученных результатов (по данным рис. 1 и 2, кривая /) показывает, что покрытие нерабочей части анодов нитридом бора (это эквивалентно повышению геометрической плотности тока вследствие уменьшения бокового рассеивания тока) не  [c.24]


S борное. волокно диаметром 100 мкм [5] 6 — борное волокно диаметром 100 мкм с покрытием из нитрида бора [76] 7 — борное волокно диаметром 100 мкм [52]  [c.460]

Прочность сердцевины значительно ниже прочности волокна в целом. В сердцевине возникают напряжения сжатия, а в прилегающих участках бора — напряжения растяжения. Это приводит к появлению остаточных напряжений и возникновению радиальных трещин. При небольшой плотности волокна бора обладают высокой прочностью и жесткостью. Высокая прочность борных волокон объясняется мелкокристаллической структурой. Большое влияние на прочность оказывает и структура их поверхности. Поверхность имеет ячеистое строение, напоминающее по внешнему виду початок кукурузы (рис. 14.28). Наличие крупных зерен на поверхности, а также включений, трещин, пустот снижает прочность борных волокон. При температуре выше 400 °С борные волокна окисляются, а выше 500 °С вступают в химическое взаимодействие с алюминиевой матрицей. Для повышения жаростойкости и предохранения от взаимодействия с матрицей на борные волокна наносят покрытия из карбида кремния, карбида и нитрида бора толщиной 3-5 мкм.  [c.452]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]

В одной из серий опытов в качестве анодов применяли графи-тированные электроды, которые отличались от используемых тем, что все поверхности их, кроме фронтальной, т. е. обращенной к катоду, были покрыты нитридом бора Исследуемые хлоридные расплавы готовили сплавлением химически чистых безводных хлоридов Na, К, Li, Са и насыщением их при температуре 700° С парообразным трихлоридом алюминия. Последний получали двумя способами — исларением при температуре 250° С безводного три-хлорида алюминия марки о. ч. и хлорированием при 450° С алюминия марки А 995 хлором, который получали электролизом хлорида свинца или испарением жидкого хлора из баллона (ГОСТ 5.1288-72).  [c.22]

Рис. 2. Изменение объемного содержания Os в хлоре в процессе анодной поляризации графити-рованных электродов в хлорид-ных расплавах при температуре 700° С (часть поверхности анода покрыта нитридом бора, А1С1зпо-лучен хлорированием алюминия) Рис. 2. Изменение объемного содержания Os в хлоре в <a href="/info/160749">процессе анодной</a> поляризации графити-рованных электродов в хлорид-ных расплавах при температуре 700° С (часть поверхности анода покрыта нитридом бора, А1С1зпо-лучен хлорированием алюминия)
Для покрытий применяют материалы со слоистой структурой (графит, дисульфид молибдена, нитрид бора и другие со свя-зуюнгими в виде смол или клеев) химически активные (фосфаты, фториды и др.), наносимые путем химических реакций, а также металлические покрытия серебром.  [c.147]

Получение силицидных покрытий из смесей хлоридов металлов изучено недостаточно. Покрытия из нитрида бора достаточно высокой чистоты могут быть получены только методам газофазного осаждедгия, [43],  [c.108]

Таблица 6.18. Коэффициент трения по стали графита и нитрида бора при использоаании их в качестве твердосмазочных покрытий [9] Таблица 6.18. <a href="/info/128">Коэффициент трения</a> по стали графита и <a href="/info/33569">нитрида бора</a> при использоаании их в качестве твердосмазочных покрытий [9]
Серьезным недостатком графита является легкость окислегшя, уже при температурах 520...560 потеря массы составляет 1% за 24 часа, поэтому поверхность графитовых изделий защищают покрытиями (карбид кремния, карбид и нитрид бора толщиной 3 -5 мкм).  [c.139]

Известно, ЧТО в зависимости от назначения покрытий и для придания специальных свойств в покрытия в качестве дисперсной фазы могут добавляться твердые упрочняющие абразивные частицы (окислы циркония и алюминия, каолин, карбиды кремния, титана, вольфрама) и мягкие слоистые частицы твердых смазок (гексагональный нитрид бора, графит, дисульфид молибдена и др.). Для увеличения твердости и сопротивления истиранию в покрытие включается от 25 до 50 % неметаллических частиц, таких, как карбиды, оксиды, бориды, нитриды. Включение в покрытие дисперсных частиц влияет на водородосодержание и величину внутренних напряжений осадков.  [c.106]


Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]

Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]

Кляйн и др. [120] исследовали эффективность при 1033 К нескольких вариантов покрытий на борном волокне с целью снизить скорость взаимодействия его с титаном. На рис. 21 приведены полученные в этой работе данные о скорости реакции между титаном и борным волокном с покрытием из нитриДа бора, карбида крем-  [c.128]

Самосмазывающиеся покрытия. В качестве второй фазы в таких покрытиях применяют частицы дисульфида молибдена, графита, нитрида бора, фталоцианинов и галогенидов кадмия, иодида серебра, оксида свинца и других веществ, причем способность вещества самосма-зываться необязательно должна зависеть от слоистости структуры [1, с. 76—80].  [c.137]

Широким фронтом идут работы в области твердых смазочных материалов и антифрикционных покрытий, обеспечивающих уменьшение трения и повышение износостойкости. К твердым смазочным покрытиям относятся твердые вещества графит, нитрид бора, сульфиды, селениды, тел-луриды, хлориды, фториды, иодиды металлов, окислы металлов, мягкие металлы, органические вещества, пластмассы ПТФЭ, ПЭ, полиамиды и др. Наибольшее распространение получили неорганические слоистые покрытия типа M0S2 и графита.  [c.200]

Сталь с покрытиями Медь с покрытиями Алюминий с покрытиями Борид титана Карбид титана Нитрид титана Нитрид алюминия Нитрид бора Нитрид циркона Карбоиитрид бора Борид хрома Циркон  [c.106]

А. Нарезание внутренней резьбы метчиками и наружной — плашкой накатывание резьб нарезание резьб резцом на токарно-винторезном станке резьбо-шлифование и др. Б. Зуборезные долбяки (дисковые и реечные) зуборезные головки шеверы (дисковые и червячные) резцы зубострогальные и др. В. Закалка ТВЧ, покрытие интридом титана на установке Булат , напыление твердым сплавом электроискровым способом и др. Г. Подшипники скольжения (сталь-1-+бронза), сверла, фрезы и т. п. (конструкционная сталь-Ьбыстрорежущая), сталь с антикоррозийным покрытием (алюминие.м, оловом и т. п.), ответственные злектроконтактирующие изделия (латунь-f серебро) н др. Д. Твердые сплавы, быстрорежущая сталь, алмазы (природные и синтетические), нитрид бора (эльбор, гексанит и прочие сверхтвердые композиты) и др. Е. Сверление, зенкерованне, развертывание, внутреннее шлифование, пробивка штамповкой и др.  [c.171]

Неметаллические антифрикционные покрытия (дисульфид молибдена, нитрид бора, графит и др.) наносят виброметодом или методом галтовки.  [c.347]

Наибольший эффект покрытие дает при точении стали и чугуна твердостью 230—240 НВ. При тяжелых условиях обработки эффективность пластин с износостойкими покрытиями снижается. Для чистовой обработки труднообрабатываемых материалов и закаленной стали 0-55 НКС) применяют режущий инструмент, оснащенный пластинами из синтетических поликристаллических сверхтвердых материалов на основе нитрида бора — композитов. В исходный нитрид бора вводят различные легирующие добавки и наполнители и получают прочно связанные мельчайшие кристаллиты (поликристаллы). К группе сверхтвердых материалов относятся композит 01 (эльбор-Р), композит 02 (белбор), композит 10 (гексанит-Р), а также поликристаллический нитрид бора.  [c.366]

К антифрикционным твердым покрытиям относятся материалы, обладающие малым коэффициентом трения, свойства которых не изменяются при высоких и низких температурах, при работе в вакууме, а также при воздействии агрессивных сред. Это — графит, дисульфид молибдена, нитрид бора, флотацианин меди, фторопласт-4 и др. В чистом виде они обладают невысокой износостойкостью и недостаточной прочностью, поэтому могут работать только в малонагруженных узлах трения при небольших скоростях, что обусловило ограниченное их применение.  [c.257]

Исследовано много различных покрытий и процессов их нанесения, из которых только два покрытия оказались перспективными покрытие из нитрида бора, наносимое методом химического взаимодействия, и из карбида кремния, наносимое из газовой фазы. Процесс нанесения нитрида бора является недорогим, а само покрытие позволяет получать высокопрочные боралюми-ниевые композиции методом пропитки.  [c.433]

В настоящее время в качестве твердых смазочных материалов для подшипников качения применяют графит и молибденит, реже дисульфид вольфрама или нитрид бора. При использовании твердого смазочного материала в подшипниках качения трудно удержать его на поверхностях трения. Существует ряд способов нанесения порошкообразных материалов на поверхности деталей подшипника втирание (шаржирование), вбивание (галтовка в барабане) и др. Главным недостатком твердопленочных покрытий является неболь-  [c.287]


Смотреть страницы где упоминается термин Покрытия нитридом бора : [c.429]    [c.96]    [c.96]    [c.7]    [c.17]    [c.129]    [c.130]    [c.345]    [c.115]    [c.150]    [c.478]    [c.482]    [c.48]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.15 , c.128 ]



ПОИСК



Борова

Бору

Борусевич

Нитрид бора

Нитриды



© 2025 Mash-xxl.info Реклама на сайте