Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Различные конструкционные металлы и сплавы

В табл. 1—5 помещены сведения о химическом составе и механических свойствах различных конструкционных металлов и сплавов.  [c.9]

Различные конструкционные металлы и сплавы  [c.17]

Оптимальные натяжения ленты при шлифовании различных конструкционных металлов и сплавов  [c.90]

Эта теория в ее современном виде объясняет не только общую величину коррозии, но и влияние гетерогенности поверхности корродирующих металлов (включая и структурную гетерогенность) на характер и скорость (увеличение и уменьшение ее, равно как и отсутствие влияния в ряде случаев) коррозионного разрушения. Она была широко использована для объяснения коррозионного поведения конструкционных металлов и сплавов в различных условиях  [c.187]


В химическом машиностроении наряду с легированными сталями находят широкое применение в качестве конструкционных материалов различные цветные металлы и сплавы, использование которых определяется как особенностями технологических процессов, так и благоприятными физико-механическими и антикоррозионными свойствами этих материалов.  [c.245]

Керамические материалы по сравнению с конструкционными металлами и сплавами характеризуются существенной зависимостью экспериментально измеряемых значений механических свойств от таких факторов, как размер и форма, способ нагружения, чистота поверхностной обработки образца. Это обусловлено хрупкостью материала, в результате которой керамика чувствительна к различным  [c.295]

Б химической промышленности явления коррозии имеют особенно большое значение вследствие сильной агрессивности большинства применяемых реагентов. Разнообразные по своему характеру явления коррозии, протекающие при химических процессах, вызывают необходимость применения для химической аппаратуры самых различных конструкционных материалов. Развитие передовой техники выдвигает перед химической промышленностью ряд новых задач по подбору конструкционных металлов и сплавов, неметаллических материалов и защитных покрытий, удовлетворяющих требованиям высокой химической стойкости при высоких температурах и давлениях.  [c.8]

Числовые значения предела текучести различных марок конструкционных металлов и сплавов даются во второй части. При пользовании ими следует иметь в виду, что предел текучести не зависит от состояния поверхности и коррозии, но зависит от масштабного фактора, на который в случае необходимости должны быть сделаны соответствующие поправки (см. п. 23).  [c.49]

Для конструкционных металлов и сплавов, эксплуатирующихся в водных растворах электролитов, величина равновесного потенциала представлена в табл. 4. При коррозии металлов в электролитах с различным pH величина потенциала может быть рассчитана по уравнению  [c.25]

Использование новых конструкционных металлов и сплавов для изготовления деталей и изделий разнообразного назначения возможно только при условии разработки методов их соединения и в частности сварки. В настоящее время сварными изготовляются изделия и конструкции не только из углеродистых, но и из различных легированных и высоколегированных сталей, никелевых  [c.5]

Конструкционные металлы и сплавы отличаются по составу и физико-химическим свойствам, поэтому требуется различный подход при решении задач, связанных с подготовкой их к пайке, удалением окисной пленки в процессе пайки, выбором припоя и режимов пайки.  [c.195]


Электрохимический способ металлизации является наиболее распространенным и легко управляемым из всех методов, применяемых для непосредственного нанесения металлических покрытий на конструкционные металлы и сплавы [62]. Он дает принципиальную возможность восстанавливать почти все металлы и многие сплавы на их основе из водных и неводных растворов или расплавов соответствующих солей. Получая методом электроосаждения сплавы различных металлов, можно придавать покрываемым поверхностям весьма ценные и разнообразные свойства. В этом смысле способ электрохимической металлизации пока вне конкуренции. Однако промышленное применение в технологии покрытий нашли лишь металлы, перечисленные в табл. 5, причем электроосаждение их ведется только из водных растворов электролитов. Механизм электрохимического получения металлопокрытий основывается на известных законах электролиза и заключается в следующем [62].  [c.133]

Материалы и допускаемые напряжения. Существующие разнообразные способы сварки обеспечивают сварку всех конструкционных и специальных сталей, чугунов, цветных металлов и сплавов, а также термопластичных пластмасс. Лучше всего свариваются малоуглеродистые обыкновенные, качественные и низколегированные стали. Для сварки сталей с повышенным содержанием углерода, высоколегированных сталей, чугунов, ряда цветных металлов и сплавов, а также сочетания различных материалов необходимо применять специальную технологию.  [c.388]

В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах.  [c.6]

Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]

Детали из пластмасс широко используются как электроизоляционные, конструкционно-изоляционные и чисто конструкционные. Особенно широко они применяются в производстве электрических аппаратов и приборов, в том числе высокочастотных, а также мелких электрических машин. Широкому применению пластмасс способствует все увеличивающаяся их номенклатура и разнообразные ценные свойства, а также особенность технологии получения деталей из пластмасс. Некоторые пластмассы имеют весьма высокие электроизоляционные свойства и могут применяться при сравнительно высоких напряжениях и высоких частотах другие имеют настолько высокие механические характеристики, что могут применяться взамен конструкционных деталей из различных металлов и сплавов. При этом облегчается масса изделий, повышается эксплуатационная надежность аппаратуры с точки зрения вероятности пробоя изоляции, повышается коррозионная стойкость. Очень ценным технологическим свойством пластмасс является возможность получения за одну операцию прессования деталей весьма сложной формы, часто с запрессовкой металлических деталей.  [c.194]


При подготовке доработанного обзора вся новая информация была добавлена к основной части в виде дополнительной главы Состояние исследований на 1977 г. Расположение материала в новой главе повторяет структуру исходного обзора. Кроме того, добавлено несколько новых параграфов, посвященных коррозии крепежных деталей, конструкционных металлов с покрытиями, композиционных и некоторых других материалов, а также глава, обобщающая последний опыт применения различных металлов и сплавов в опреснительных установках.  [c.11]

Коррозия в морской воде. Титан обладает высокой коррозионной стойкостью в условиях морской атмосферы и в морской воде. На титановых образцах, выдерживавшихся в течение 18 месяцев как в стоячей, так и в перемешиваемой морской воде или в атмосфере морского соленого воздуха, никакой коррозии или какого-либо изменения свойств обнаружено не было. Титан принадлежит к металлам, не обрастающим с поверхности морскими организмами, присутствие которых вызывает точечную или щелевую коррозию. В гальваническом ряду различных металлов и сплавов в среде морской воды титан располагается между сплавами инконель (пассивированный) и монель. Таким образом, титан является катодом по отношению к другим конструкционным металлам. В паре с другими металлами титан обычно не корродирует, но резко усиливает коррозию более активных металлов.  [c.765]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

Развитие современной техники неразрывно связано с увеличивающейся потребностью в конструкционных материалах, требования к которым с точки зрения обеспечения надежности и долговечности, экономичности и технологичности постоянно возрастают. Повышение эффективности использования металлических материалов в тяжелонагруженных конструкциях возможно на основе использования двух- или многослойных металлов и сплавов, изготавливаемых различными технологическими способами. Важнейшими из них являются электродуговая и электрошлаковая наплавка, заливка, пакетная прокатка, сварка взрывом и их различные комбинации [1-8]. Каждый из этих способов имеет свои преимущества и недостатки, определяющие область его рационального применения.  [c.107]

Чистый магний из-за низких механических свойств как конструкционный материал практически не применяют. Его используют в пиротехнике, в химической промышленности для синтеза органических соединений, в металлургии различных металлов и сплавов как раскислитель, восстановитель и легирующий элемент.  [c.375]

Магний является основой для наиболее легких конструкционных сплавов. Широкое применение магниевых сплавов в различных отраслях обусловлено самой низкой плотностью (плотность магния - 1740 кг/м ) из конструкционных металлов, магниевые сплавы имеют высокую способность к поглощению ударных и вибрационных нагрузок, высокую удельную жесткость при изгибе и кручении, отличную обрабатываемость резанием, хорошую шлифуемость. Магниевые сплавы имеют пониженную коррозионную стойкость.  [c.186]

На Волжском автомобильном заводе и ряде машиностроительных предприятий наиболее широко были испытаны СОЖ Укринол-1, МР-1 и ОСМ-3. Данные испытаний свидетельствуют в целом о высокой технологической эффективности эмульсий, приготовленных из Укринола-1, как при обработке конструкционных сталей, алюминиевых сплавов на различных операциях лезвийной и абразивной обработки, так и при обработке труднообрабатываемых материалов нержавеющих сталей — на операциях точения, сверления, фрезерования титановых сплавов — на операция точения, фрезерования и на операции точения тугоплавких металлов и сплавов. О высокой эффективности эмульсий Укринол-1 свидетельствует возможность получения значительного повышения стойкости инструментов (/Сг= l,4- 2,3) при меньшей сравнительно с ЭТ-2 и ЭГТ концентрации эмульсола в эмульсиях (3—5% вместо 5—25%) На операциях чистовой обработки, как правило, Укринол-1 при резании различных материалов обеспечивает улучшение шероховатости обработанной поверхности на один класс по сравнению с эмульсиями равной или большей концентрации из эмульсола ЭТ-2 или с жировыми и минеральными маслами.  [c.172]

Одним из эффективных путей повышения уровня прочности, а также конструкционной надежности металлов и сплавов является применение различного рода композиционных металлических двух- и многослойных материалов, изготовляемых с помощью методов плакирования, основанных, как правило, на использовании явления схватывания или сварки разнородных составляющих композиции в твердом состоянии.  [c.132]

Как известно, почти все конструкционные материалы (металлы и сплавы, каменные породы в определенной мере, а также пластмассы) представляют собой агрегаты, состоящие из большого количества мелких структурных элементов (зерен), имеющих ту или иную ориентировку, иногда с равномерным статическим распределением, а в случае гетерогенных материалов даже несколько различных типов зерен.  [c.100]


Развитие народного хозяйства в значительной степени определяется производством металлов и сплавов, которые являются основными конструкционными материалами для создания различного оборудования, машин, приборов, строительных конструкций и т. д. Уровень производства металлов характеризует индустриальный потенциал каждой страны. В СССР производство металлов постоянно возрастает. Так, если в 1940 г. годовое производство стали составило 18,3 млн. т, то в 1982 г. оно возросло до 147 млн. т. Ежегодно увеличивается производство цветных металлов — алюминия, меди, никеля, титана и других. Это огромное народное богатство на всех стадиях производства и эксплуатации должно расходоваться экономно и бережно.  [c.6]

Технология металлОв — наука, представляющая собой совокупность современных знаний о способах производства металлических материалов и средствах их физико-химической переработки в целях изготовления деталей и изделий различного назначения. Достоинством металлов и сплавов является то, что путем целенаправленного изменения их химического состава и внутреннего строения можно получать различные конструкционные материалы с новыми свойствами, дающими возможность применения их во всех отраслях народного хозяйства. Несмотря на то, что с каждым годом появляется все больше полимеров и других химических материалов, металлы по-прежнему остаются основой технического прогресса.  [c.3]

В результате последовательных лабораторных и натурных испытаний получено достаточно много данных, характеризующих кавитационную стойкость различных конструкционных металлов и сплавов (см. 7). Тем не менее выбор материала для деталей проектируемой гидравлической машины в каждом конкретном случае является делом очень сложным, так как действительные условия, в которьих будет работать этот материал, часто остаются неизвестными, и конструктору приходится пользоваться данными по эксплуатации подобных по типу и размеру машин или результатами лабораторных исследований. 1з-за незнания истинного механизма кавитационной эрозии и ошибок в определении момента возникновения кавитации и степений ее развития возможны неправильные решения. Следовательно, в настоящее время нет единой методики выбора  [c.162]

Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — низколегированная сталь с введешиамв нее трещиноостановителем из вязкого сплава специального состава 3 — сварное соединение конструкционной стали, плакированное нержавеющей аустенитной сталью 4 — многослойный материал из высокопрочного алюминиевого сплава с наружными плакирующими слоями и внутренними прослойками из технически чистого алюминия 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс свойств жаропрочность, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — <a href="/info/58326">низколегированная сталь</a> с введешиамв нее трещиноостановителем из вязкого <a href="/info/59795">сплава специального</a> состава 3 — <a href="/info/2408">сварное соединение</a> <a href="/info/51124">конструкционной стали</a>, плакированное <a href="/info/161844">нержавеющей аустенитной сталью</a> 4 — <a href="/info/134125">многослойный материал</a> из <a href="/info/626652">высокопрочного алюминиевого сплава</a> с наружными <a href="/info/183873">плакирующими слоями</a> и внутренними прослойками из <a href="/info/543860">технически чистого алюминия</a> 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс <a href="/info/537100">свойств жаропрочность</a>, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность
Назначение изделий новой техники привело к необходимости применения в них новых конструкционных металлов и сплавов высокоактивных (титана, цйркония) легких (алюминия, бериллия, магния), прочных (железных, кобальтовых, никелевых) полудрагоценных и драгоценных (серебра, золбта, платины, палладия), радиоактивных (урайа, плутшия), композиционных материалов, а также различных неметаллических материалов — керамики, графита, полупроводников, стекла, фарфора и т. и.  [c.16]

Установлено, что замена стали марки Ст. 3 на конструкционную сталь (например, сталь марок ЗОХГСА, МК40, АК29 и др.) мало изменяет прочность сцепления отдельных пар металлов и сплавов после сварки их взрывом, что позволяет получать биметаллические и многослойные высокопрочные заготовки и детали из самых различных сочетаний металлов и сплавов.  [c.6]

Различными электродами в конструкционных металлах и сплавах служат и разнородные структурные составляющие. Электродвижущая сила таких элементов, даже небольшая, при хорошей проводимости среды и низком потенциале растворяющегося металла приводит к весьма значитёльной коррозии.  [c.25]

При подготовке монографии мы стремились сделать ее полезной как для специалистов, так и для заинтересованных представителей смежных профессий и студентов. Для полноты представления материала в первых двух главах кратко изложены сведения из механики сплошных сред в объеме, необходимом для обсуждения экспериментов, и обзор современных экспериментальных методов. В третьей и четвертой главах обсуждаются результаты экспериментальных исследований вязкоупруго-пластической деформации материалов различных классов в ударных волнах и расчетные модели неупругого деформирования. Сопротивление разрушению конденсированных сред в субмикросекундном диапазоне длительностей нагрузки изучается путем анализа откольных явлений при отражении импульса ударного сжатия от поверхности тела. Механизм и динамика откольного разрушения в конструкционных металлах и сплавах, пластичных и хрупких монокристаллах, керамиках и горных породах, стеклах, полимерах, эластомерах и жидкостях обсуждаются в пятой главе. В шестой главе представлено несколько наиболее важных примеров полиморфных превращений веществ в ударных волнах. Некоторые вопросы взаимодействия импульсов лазерного и корпускулярного излучения с веществом, что является одним из новых приложений физики ударных волн, обсуждаются в гл.7. Восьмая глава представляет собой обзор уравнений состояния и кинетики разложения взрывчатых веществ в ударных и детонационных вол-  [c.7]

Определение предела текучести при изгибе хрупких п малопластичных материалов производится по вышеприведенным формулам теории упругости и не представляет затруднений. Для определения пластичных материалов предложены различные, чаще всего недостаточно простые, математические зависимости между изгибающим моментом Мн деформацией е, получившие малое практическое примепенне [81]. Приближенно условный предел текучести при изгибе может быть определен по известному <1о,2- Обычно считается, что 0о,2 при изгибе на 18—20% больше <Т 2 при растяжении. По И. Б. Подзолову [73], в случае конструкционных металлов и сплавов расчетное отношение ——  [c.71]

Все это, а также отзывы по второму изданию книги, поступившие в связи с широким техническим и научным обсуждением этого учебного пособия, в которых были высказаны пожелания о введении некоторых изменений и необходимости дополнения книги новыми главами, побудило автора переделать некоторые главы книги, сократить менее ценный материал и написать новые главы. Книга дополнена следующими главами глава VI Влияние конструктивных особенностей элементов аппаратов и сооружений на коррозионный процесс глава VII Разрушение металлов при совместном действии коррозионных и механических факторов глава XV Коррозия новых конструкционных металлов и сплавов . Вместо одной главы Пластические массы , помещенной во втором издании, дано пять глав по высокополимерным материалам. Коренной переработке подверглись главы II, III и IV по кинетике процессов электрохимической коррозии и пассивности металлов и глава IX по химической коррозии. Глава XXXI по углеграфитовым и древесным материалам значительно расширена в первой части, учитывая большое значение этих материалов в химическом машиностроении, и сокращена во второй части. Сокращены также глава I, поскольку вопросы строения металлов и растворов подробно рассматриваются в различных учебниках, и глава XVI Металлические защитные покрытия и химические методы обработки , поскольку эти способы защиты в химическом машиностроении неэффективны.  [c.4]


КЛАССИФИКАЦИЯ И ОБЩ.АЯ ХАРАКТЕРИСТИКА МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имиташя условий их эксплуатации.  [c.5]

Свойства металлов и сплавов зависят от их состава, структуры, которые могут изменяться в широких пределах под влиянием различной обработки поэтому одной из основных задач курса Конструкционные, проводниковые и магнитные материалы является изложение основ учения о внутрикристаллической природе металлов и сплавов, о их структуре, факторах, влияющих на структуру и физико-химические свойства (электрические, магнитные, тепловые, прочностные, коррозионные и др.) электротехнических материалов. Поэтому инженер-элек-  [c.3]

Успехи, достигнутые в области физики твердого тела, физической химии и материаловедения, способствовали созданию ряда перспективных металлов и сплавов, неметаллических конструкционных материалов и защитных покрытий, а также модифицированных химически стойких строительных материалов, физико-механические характерист 1ЕИ кото ш неосновном удовлетворяют потребностям современной техники. Однако их практическое использование иногда задерживается из-за опасности преащеврененного развития различных видов коррозии в конкретных промышленных условиях. Если обратиться к результатам оценки распределения по различным идам коррозионных разрушений металлического оборудования химической промышленности США за 1968-71 гг. (анализ 685 случаев), то они в процентном отношении выглядят следующим образом общая коррозия - 27,5 коррозионное растрескивание - 23,7 мехкристаллит-  [c.3]

Многие крупные ученые старшего поколения отдали свои знания и опыт делу развития металловедения и технологии термической обработки металлов и сплавов в первые пятилетки индустриализации страны. Н. С. Курнаков (1861—1941 гг.) — крупнейший металлофизик, создатель науки о физических методах исследования сплавов и законах их образования. С. С. Штейн-берг (1872—1940 гг.) — создатель Уральской школы металловедов-терми-стов, внесший большой вклад в изучение проблемы аустенит и его превра-ш ения во всем многообразии связанных с этим преврагцением явлений и получением конечных результатов. Н. А. Минкевич (1883—1942 гг.) — руководитель и непосредственный участник работ по определению, назначению и разработке технологических процессов термической обработки различных марок стали для деталей самолетов, автомобилей, тракторов и изделий оборонной промышленности периода первых пятилеток. Им разработано большое количество конструкционных и инструментальных марок стали.  [c.145]

Коррозионное разрушение металлов и сплавов происходит вследствие растворения твердого металла в расплавленном натрии, путем взаимодействия окислов металлов, располагающихся между зернами и натрием и его окислами [1,49], [1,57]. При взаимодействии, например, окиси натрия с окислами кремния могут образоваться легкоплавкие эвтектики, что ослабляет связь между зернами металла. При наличии в натрии кислорода и соответственно окислов натрия коррозия может протекать по электрохимическому механизму [1,49]. С этим обстоятельством возможно связана более высокая скорость растворения металлов в натрии при контактах разнородных материалов. Анодный процесс состоит в переходе ион-атомов из кристаллической решетки в расплав, катодная реакция — в восстановлении натрия из окисла до металла. О. А. Есин и В. А. Чечулин [I, 58] доказали, что эффективность катодного процесса восстановления натрия определяется скоростью диффузии ионов натрия в расплаве, содержащем его окислы. Локальные коррозионные элементы на поверхности металла могут образоваться вследствие структурной неоднородности, различных уровней механических напряжений, разрушения окисных пленок на отдельных участках поверхности и по ряду других причин. Устранение кислорода из расплава или связывание его в прочные соединения ингибиторами подавляет электрохимическую коррозию и, как известно, увеличивает стойкость конструкционных материалов в расплавленном натрии.  [c.50]

Бесканифольные флюсы, содержащие органические и неорганические соединения для пайки черных и цветных металлов. Флюсы этой группы (табл. 9) получили широкое применение в различных областях техники. В состав таких флюсов входят в различных сочетаниях галогениды, бориды н другие неорганические соединения. Органические компоненты — гидразин, глицерин, вазелин, этиленгликоль — оказывают такое же воздействие на окислы паяемого металла, как и в других, рассмотренных выше флюсах. Совместное применение органических и неорганических компонентов дает весьма положительный эффект при пайке меди, медных сплавов, а также конструкционных, коррозионно-стойких сталей и других металлов и сплавов.  [c.118]

Анализ причин размерной нестабильности деталей приборов показал [14], что изменение размеров деталей в процессе эксплуатации приборов или длительного их хранения в принципе вызвано нестабильностью фазового состава и структурного состояния сталей и сплавов после окончательной термической и механической обработки деталей, причем самопроизвольный переход к более стабильному фазовому составу или структурному и напряженному состоянию дополнительно стимулируется эксплуатационными и остаточными напряжениями, возникшими в деталях в процессе различных технологических операций. На практике размерная нестабильность изделий является результатом протекания релаксации конструкционных (эксплуатационных) и остаточных напряжений, причем этн процессы особенно интенсивно развиваются в сплавах с метастабильным фазовым н структурным состоянием, а наименее интенсивно — в сплавах со стабильной структурой, в том числе и дислокационной, для которых характерно высокое сопротиаление малым пластическим деформациям (последнее обстоятельство позволяет оценивать степень размерной стабильности металлов и сплавов показателями сопротивления микропластическим деформациям).  [c.686]

Предположение о несжимаемости материалов при ползучести с большой степенью точности выполняется для большинства металлов и сплавов. Однако при этом допущении не удается описать такое часто встречающееся у легких металлов и их сплавов явление, как неодинаковость поведения при растяжении и сжатии. Это связано с тем, что в рамках тензорно-линейных уравнений состояния, записанных выше, не учтено влияние на ползучесть нечетного инварианта тензора напряжений. Для учета разносопротивляемости при ползучести большинство авторов используют первый инвариант тензора напряжений [71, 137]. Имеются работы, где для этих целей привлекается третий инвариант девиатора напряжений [58, 177]. Различные реологические модели сред и их практическое применение при расчетах элементов машиностроительных конструкций рассмотрены в монографии [166]. Следует отметить исследования, проведенные в работе [137], предоставляющие широкие возможности для построения соотношений теории ползучести, учитывающих разнообразные эффекты, свойственные современным конструкционным материалам.  [c.108]

Воздействие водорода на сталь при повышенных температурах и давлениях связано, в основном, с раэрущением карбидной составляющей, вызывающим необратимые потери первоначальных свойств материала [1]. Такое физико-химическое явление принято в технике называть водородной коррозией стали. Ниже приведены справочные данные по растворимости и диффузии водорода в металлах и сплавах, методам защиты их от воздействия водорода, а также рекомендации по применению конструкционных сталей для изготовления оборудования, предназначенного для различных условий эксплуатации.  [c.335]


Смотреть страницы где упоминается термин Различные конструкционные металлы и сплавы : [c.9]    [c.6]    [c.82]    [c.4]   
Смотреть главы в:

Детали механизмов точной механики  -> Различные конструкционные металлы и сплавы



ПОИСК



Конструкционные металлы и сплавы

Конструкционные сплавы

Металлы и сплавы Металлы

Различные металлы

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте