Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы электролиза

Закон электролиза. Вещества, растворы которых проводят электрический ток, называются электролитами. Вода и кристаллы хлорида меди практически не проводят электрический ток. Раствор хлорида меди в воде является хорошим проводником. При прохождении электрического тока через водный раствор хлорида меди у положительного электрода, называемого анодом, выделяется газообразный хлор. На отрицательном электроде, называемом катодом, выделяется медь.  [c.163]


Выражения (47.1) или (47.2) называются законом электролиза. Коэффициент пропорциональности k в этих выражениях называется электрохимическим эквивалентом вещества.  [c.163]

По закону электролиза Фарадея, количество электричества е, прошедшего через элемент, пропорционально числу п прореагировавших молей электролита и валентности Z иона, переносящего заряд  [c.180]

Электрохимическая обработка металлов основывается на законах электролиза, установленных Фарадеем, и на явлении поляризации. Закон Фарадея количественно выражается уравнением  [c.59]

Для анализа процессов, происходящих в гальваническом элементе, необходимы сведения о том, как связаны между собой величины количества электричества, прошедшего через элемент, и количества прореагировавшего при этом вещества электролита (т. е. количества вещества, выделяющегося в результате реакции). Напомним в этой связи, что в соответствии с законами электролиза количество электричества (заряд), прошедшего через гальванический элемент, пропорционально количеству молей прореагировавшего вещества электролита  [c.221]

Электродвижущая сила ТЭ определяется исходя из законов электролиза из уравнения  [c.279]

Второй закон Фарадея (второй закон электролиза)  [c.97]

Особенность процесса коррозии металла в поле блуждающих токов заключена в том, что это электролитический процесс, протекающий по законам электролиза.  [c.209]

Прохождение тока через растворы электролитов сопровождается переносом вещества. Явления, имеющие место при прохождении тока, подчиняются особым законам электролиза, открытым Фарадеем.  [c.16]

На катоде (в процессе электролиза и при разряде гальванического элемента) протекают реакции восстановления, а на аноде — реакции окисления. Законы электролиза применимы как к явлениям разложения электролитов, так и к процессам, протекающим в гальваническом элементе.  [c.18]

Первый закон электролиза количество вещества, выделившегося или растворившегося на электродах, прямо пропорционально количеству электричества, прошедшего через электролит.  [c.18]

Второй закон электролиза при прохождении некоторого определенного количества электричества через электролит количество выделившихся или растворившихся веш еств на электродах пропорционально их химическим эквивалентам.  [c.18]

Можно записать основной закон электролиза металлов в дифференциальной форме  [c.216]

Особенно быстрое электрохимическое разрушение металлов наступает при их погружении в электролит или влажную среду. Из двух разных металлов, погруженных в электролит, один, менее благородный , будет переходить постепенно в раствор по законам электролиза, предохраняя тем самым другой, более благородный , от воздействия электролита. Таким образом, два разных металла в электролите образуют гальваническую пару.  [c.246]


Электрохимическая коррозия подчиняется законам электролиза, и количество прокорродировавшего металла Q пропорционально величине коррозионного тока (г)  [c.49]

На законах электролиза и явлениях поляризации основан также метод электролитического полирования, при котором поляризационная пленка, образовавшаяся на выпуклых местах поверхности, удаляется силами электрического поля. Как и для обыкновенного механического полирования, поверхности перед этим шлифуют.  [c.109]

Электролитическое осаждение металлов основано на законах электролиза. В электролите образуются молекулы, расщепленные (диссоциированные) на электрически заряженные частицы — ионы, которые могут быть представлены атомами или группами атомов. Под действием электрического тока, пропускаемого через электролит, положительные ионы (катионы) движутся к катоду, а отрицательные ионы — к аноду. Положительные ионы представлены металлом, входящим в электролит (хромом, никелем и др.), и водородом На, а отрицательные — кислотными остатками, например 804, и водными остатками ОН.  [c.317]

Сравнение энергозатрат при электролитическом и вакуумном методах нанесения покрытий показывает, что по расходу энергии на единицу массы покрытия (без учета потерь) преимущество на стороне вакуумного метода, так как теплота испарения большинства металлов меньше энергии, необходимой для перемещения ионов этих же металлов в электролите от анода к катоду. Из законов электролиза следует, что особенно велики расходы энергии при электролитическом нанесении металлов с малой относительной атомной массой и высокой валентностью.  [c.217]

Процесс электролитического осаждения металла основан на законах электролиза, т. е. прохождения постоянного тока через электролиты. Прохождение тока через электролит связано с передвижением электрически заряженных частиц — ионов. Ток посту-  [c.269]

Процесс электролитического осаждения хрома. Процесс хромирования основан на законах электролиза, т. е. прохождения постоянного тока через электролиты.  [c.118]

Еще Фарадеем были исследованы законы электролиза, причем была обнаружена сугубо линейная зависимость количества ионов, выделившихся из растворов на электродах, от величины электрического заряда, прошедшего через раствор.  [c.155]

Законы электролиза. Дискретность  [c.230]

Опсрытие электрона. Установление закона электролиза еще не доказало строго, что в природе существуют элементарные электрические заряды. Можно, например, предположить, что все одновалентные ионы имеют различные электрические заряды, но их среднее значение равно элементарному заряду с.  [c.165]

Во времена Фарадея никому не пришла мысль воспользоваться открытыми им законами электролиза для выяснения природы электричества. Интерес к ним возродился в конце столетия в связи с успехами атомно-молекулярной теории. Законы электролиза легко интерпретировались, если предположить, что в растворе, например, Na l в воде с каждым атомом связан определенный заряд, причем эти заряды одинаковы и противоположны по знаку Na" и С1 . Тогда при прохождении через раствор одного и того же количества электричества, равного 96484 Кл. на электродах выделится по молю вещества, т. е. по Л а = 610 атомов.  [c.98]

Ф. п. применяется в электрохим. расчётах. Названа в честь М. Фарадея (М. Faraday), открывшего осн. законы электролиза. Значение F определялось на основе измерений эл.-хим. эквивалента серебра.  [c.275]

При восстановлении изношенных деталей используют закономерности электрохимических процессов, относящиеся к превращению электрической энергии в химическую. К ним относятся законы электролиза, термодинамические и кинетические закономерности электрохимических процессов. Теоретическое значение массы вещества т (в фаммах), выделившегося на электроде, определяется с помощью объединенного закона М. Фарадея  [c.408]

Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Деви и Фарадея, устан01вивших законы электролиза, швейцарского химика Де-ля-Рива, объяснившего растворение цинка в кислоте действием микро-гальваничес ких элементов, русских физико-химиков Н. Н. Бекетова, исследо1вавшего в 1865 г, явления вытеснения из растворов одних металлов другими, и Н. Н. Каяндера, пришедшего в 1881 г. к выводу, что растворенные вещества распадаются на составные части, а также шведского химика Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации, и немецкого физико-химика Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов.  [c.5]


Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающегося английского ученого М. Фарадея, установившего законы электролиза, швейцарского химика А. Де-ля-Рива, объяснившего растворение цинка в кислоте действием микрогальванических элементов, русских фи-зико-химиков Н. Н. Бекетова, исследовавшего в 1865 г. явления вытеснения из растворов одних металлов другими и И. Н. Каян-дера, пришедшего в 1881 г. к выводу, что растворенные вещества распадаются на составные части, а также шведского химика  [c.9]

Об экономичности работы ванны судят но выходу металла по току (отношение ко. шчества фактически осажденного на катоде или растворенного на аноде металла к теоретическому количеству, подсчитанному на основе законов электролиза).  [c.558]

В 30-х годах прошлого столетия великий английский физик М. Фарадей открыл законы электролиза и ввел соответствующую терминологию в эту область. Первую теорию электролиза предложил в 1885 г. литовский физик Т. Гроттус, она используется и сейчас для объяснения прохождения тока через растворы кислот и щелочей.  [c.66]

Важным вкладом в развитие теории электрохимической коррозии были работы английского ученого Фарадея, установившего основные законы электролиза и выдвинувшего, для объяснении явления пассивности металлов, гипотезу о существовании тонкой невидимой пленки, и швейцарского ученого Де Ла Рива, выдвинувшего гипотезу о существовании микрогальваниче-ского элемента.  [c.50]

Фарадей (Faraday) Майкл (1791-1867) — английский физик, основоположник учения об электромагнитном поле. Учился самостоятельно. Ввел основные понятия электромагнитного поля, высказал идею существования электромагнитных волн. Идею электромагнитного поля А. Эйнштейн рассматривал как самое важное открытие со времен Ньютона и в связи с этим писал Надо иметь могучий дар научного предвидения, чтобы распознать, что в описании электрических явлений не заряды и не частицы описывают суть явлений, а скорее пространство между зарядами и частицами . Открыл электромагнитную индукцию. Установил законы электролиза, названные его именем, открыл вращение плоскости поляризации света в магнитном поле (эффект Фарадея). Ввел понятие диэлектрической проницаемости, экспериментально доказал закон сохранения электрического заряда.  [c.28]

Хромирование применяется как защитно-декоративное покрытие для износоустойчивости и для восстановления изношенных поверхностей деталей до номинальных размеров. Хромированием восстанавливаются поршневые пальцы, шкворни, опорные шейки распределительного вала, толкатели, стержни клапанов и дрзтие детали. Нанесенный на поверхность слой хрома обладает высокой твердостью и износостойкостью. Сущность хромирования основана на законах электролиза. Если через электролит, содержащий ионы металла, пропускать постоянный ток, то из электролита будет выделяться и осаждаться на отрицательном электроде чистый металл.  [c.335]

Электролитический метод восстановления деталей. Электролитический метод восстановления деталей оснп-ван на законах электролиза. Электролиз представляет собой процесс, протекающий в электролитах при пропускании через них электрического тока. Процесс электролитического нанесения металла подчиняется закону Фарадея и определяется по формуле  [c.209]

Электродвижущая сила и КПД топливного элемента. Процесс в гальваническом, а следовательно, и в топливном элементе может считаться обратимьш, если протекающий в замкнутой цепи электрический ток достаточно мал, т. е. внешнее сопротивление велико (при этом джоулева теплота, пропорциональная квадрату плотности тока f, пренебрежимо мала по сравнению с полезной работой, пропорциональной / другие источники необратимости здесь не рассматриваются). В этом случае полезная внешняя работа макс (отнесенная к единице площади рабочей поверхности элемента) за время т равна произведению электродвижущей силы е на электрический заряд — /т, протекающий через элемент акс = вр . По законам электролиза = Fa MZ, где М — число ионов, переносящих заряд Z — валентность иона Fa — коэффициент пропорциональности, называемый константой Фарадея (96 540 кулон моль). Таким образом, макс = Fa MZ. Но согласно уравнению -Тиббса— Гельмгольца при Т = onst, р — onst акс = Л — /2 + + Т ( акс/ Лр.  [c.172]


Смотреть страницы где упоминается термин Законы электролиза : [c.198]    [c.306]    [c.596]    [c.735]    [c.16]    [c.146]    [c.292]    [c.134]    [c.378]    [c.318]    [c.123]    [c.243]   
Смотреть главы в:

Подземная коррозия металлов и методы борьбы с ней  -> Законы электролиза

Защитные покрытия в машиностроении  -> Законы электролиза

Занимательная гальванотехника Пособие для учащихся Издание 3  -> Законы электролиза



ПОИСК



Законы электролиза Фарадея

Законы электролиза. Дискретность электрических зарядов

Электролиз



© 2025 Mash-xxl.info Реклама на сайте