Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы для технических сопротивлений

Сплавы для изготовления сопротивлений прецизионных (образцовые сопротивления, различные элементы электроизмерительных приборов, катушки сопротивления, шунты, обмотки потенциометров) технических (регулирующие и пусковые реостаты, нагрузочные элементы).  [c.244]

К высокоомным сплавам для технических резисторов предъявляют менее жесткие требования по величине температурного коэффициента электрического сопротивления и его стабильности во времени.  [c.255]


Наиболее распространенная конструкция технического платинового термометра сопротивления общего назначения показана на рис. 5.24, г. Чувствительный элемент (проволочного или пленочного типа) прочно закреплен в нижней части защитного кожуха из нержавеющей стали или специального сплава с помощью цемента. Изолированные выводы, идущие внутри кожуха к соединительной колодке, могут фиксироваться изоляционной крошкой, цементом или пластиковой заливкой в зависимости от того, на какой уровень вибраций рассчитан термометр и в каком диапазоне температур он будет работать. Для уменьшения инерционности кожух этого термометра нередко имеет суженный конец, подобно другим термометрам, показанным на этом рисунке. Назначение этих термометров рассматривается ниже.  [c.226]

Ко вторым относятся термомагнитные сплавы на основе Ni—Си, Fe—N4 или Fe—Ni—Сг. Указанные сплавы применяются для компенсации в установках температурной погрешности, вызываемой изменением индукции постоянных магнитов или изменением сопротивления проводов в магнитоэлектрических приборах ио сравнению с тем значением, при котором производилась градуировка. Для получения ярко выраженной температурной зависимости магнитной проницаемости используется свойство ферромагнетиков снижать индукцию с ростом температуры вблизи точки Кюри. Для этих ферромагнетиков точка Кюри лежит между О и 100 С в зависимости от добавок легирующих элементов. Сплав Ni—Си при содержании 30 % Си может компенсировать температурные погрешности для пределов температуры от —20 до -f80 °С (рис. 9-15) а при 40 % Си — от —50 до +10 °С. Наибольшее техническое применение получили сплавы Fe—Ni—Со (компенсаторы). Достоинствами их являются  [c.282]

На некоторых сталелитейных заводах небольшими добавками миш-металла пользуются для повышения качества низколегированных аусте-нитных нержавеющих сталей. Главный выигрыш при этом — улучшение обрабатываемости в горячем состоянии, что повышает выход годно 0. Высоколегированным нержавеющим сталям внутренне присуща красноломкость. Присадка к таким сталям около 0,02% мишметалла превращает нх в пластичные сплавы. Судя по некоторым производственным данным, добавки мишметалла повышают сопротивление нержавеющих сталей окислению, позволяя в отдельных случаях снижать содержание никеля. К черным сплавам мишметалл присаживают обычно в небольшом количестве, составляющем около нескольких килограммов на тонну. Сохраняются редкоземельные металлы в сталях в весьма малых и незначительных концентрациях. Их вводят чаще всего в виде ферроцерия, который является техническим сплавом мишметалла с железом.  [c.611]


Технические характеристики камерных электропечей сопротивления и электропечей-миксеров для поддержания температуры алюминия и его сплавов перед раздачей их  [c.284]

Значение коэффициента запаса зависит от многих факторов разброса характеристик прочности, наличия допускаемых техническими условиями дефектов в материале, степени схематизации расчетной схемы и др. В России коэффициенты запаса прочности составляют по временному сопротивлению для сталей = 2,4 для титановых сплавов щ = 3,0 для алюминиевых сплавов щ = 3,5. Для сталей коэффициент запаса прочности по пределу текучести 1,5.  [c.623]

Для изучения эрозионной стойкости цветных сплавов представляет интерес исследование сопротивляемости гидроэрозии технически чистых металлов. При изучении механизма их гидроэрозии было установлено, что характер разрушения зависит от природы металла. В то же время замечено, что металлы с одинаковым типом кристаллической решетки при одних и тех же условиях микроударного воздействия проявляют различную способность к упрочнению. Это объясняется тем, что сдвиги при деформации металла происходят не только по плоскостям с плотным расположением атомов, но и по другим плоскостям, благоприятно ориентированным относительно действующей нагрузки. Следовательно, сопротивление металла пластической деформации определяется возможностью образования плоскостей скольжения при деформировании отдельных микрообъемов.  [c.237]

Таблица 3.21. Технические данные сплавов сопротивления для нагревателей ЭПС Таблица 3.21. Технические данные <a href="/info/230778">сплавов сопротивления</a> для нагревателей ЭПС
Сопротивление усталости характеризуется пределом выносливости или пределом усталости, т. е. наибольшим напряжением, которое может выдержать металл без разрушения N циклов нагружений (число нагружений, задаваемое техническими условиями эксплуатации машины). Согласно ГОСТ 2860—65, предел выносливости Стд стальных образцов, имеющих горизонтальный участок на кривой усталости, находят при определенном напряжении на базе N = 10-10 циклов нагружений, а образцов из легких сплавов, кривые которых не имеют горизонтальных участков — на базе N = 100 10 циклов нагружений. В случае сравнительных испытаний допускаются базы испытаний для определения предела выносливости, соответственно равные 5-10 и 20-10 циклов. Если металл выдержал указанное число циклов без разрушения, то он выдержит такое же напряжение и при значительно большем числе циклов нагружений.  [c.104]

Базой для линейной механики разрушения послужила концепция Гриффитса. В изделиях из технических металлов и сплавов трещины, как правило, содержатся еще до начала нагружения или возникают в результате деформации. В любом случае склонность к хрупкому разрушению определяется в первую очередь сопротивлением развитию трещины, а не ее зарождению. В статических условиях под действием приложенного напряжения трещина раскрывается постепенно и достаточно  [c.197]

Частотный диапазон применения различных групп магнитомягких материалов в значительной степени определяется величиной их удельного электрического сопротивления. Чем оно больше, тем на более высоких частотах можно использовать материал. Это объясняется тем, что при малых значениях удельного сопротивления с повышением частоты могут недопустимо возрасти вихревые токи и, следовательно, потери на перемагничивание. В постоянных и низкочастотных (до сотен герц и единиц килогерц) полях применяют металлические магнитомягкие материалы, к которым относятся технически чистое железо (низкоуглеродистые электротехнические стали), электротехнические (кремнистые) стали и пермаллой — железоникелевые и железо-никелькобальтовые сплавы. На повышенных и высоких частотах в основном применяют материалы, удельное сопротивление которых соответствует значениям, характерным для полупроводников и диэлектриков. К таким материалам относятся магнитомягкие ферриты и магнито-диэлектрики (см. гл. 30). Иногда на повышенных частотах и особенно при работе в импульсном режиме (см. гл. 31) применяют также металлические материалы тонкого проката (до нескольких микрометров).  [c.287]


Технически чистое железо является дешевым и технологичным материалом оно хорошо штампуется и обрабатывается на всех металлорежущих станках. Железо обладает высокими магнитными свойствами в постоянных полях. Вследствие низкого удельного электрического сопротивления железо используют при изготовлении изделий, предназначенных для работы только в постоянных магнитных полях. Технически чистое железо применяют как шихтовый материал для получения почти всех ферромагнитных сплавов.  [c.288]

Техническое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих его магнитные свойства. Благодаря сравнительно низкому электрическому сопротивлению чистое железо используется довольно редко, в основном для магнитопроводов постоянного магнитного потока. Получение возможно более чистого железа оказалось необходимым для изготовления ряда сплавов, имеющих особое значение в электротехнике.  [c.344]

Оптимальным усилием подпора следует считать такое усилие, при котором штамповка протекает без разрушения материала, а высота отвода получается наибольшей без существенного утонения стенки. Техническими условиями большинства деталей с отводами допускается утонение стенки не более 15—20%. Опытные работы показали, что указанные условия выполняются, если растягивающие напряжения в стенке отвода ст для большинства используемых сплавов не достигают исходного временного сопротивления при растяжении Ов и составляют (0,6-=-0,7)Ов-Тогда из выражения (И) можно найти требуемое для штамповки усилие бокового подпора  [c.127]

Из рассмотрения характеристик титана и его сплавов можно заключить, что для улучшения эксплуатационных свойств титановых деталей следует основное внимание уделять повышению сопротивления износу и схватыванию при трении и ползучести (технический титан), которое может привести к размерной нестабильности деталей, особенно тонкостенных, в процессе эксплуатации. Одним из направлений улучшения эксплуатационных свойств деталей из титана является создание новых сплавов путем легирования титана различными элементами в разнообразных соотношениях [21]. Однако создание высоколегированных и многокомпонентных сплавов приводит к резкому повышению и без того высокой стоимости титановых сплавов.  [c.29]

Проволока из меди и сплава копель для низкотемпературных термоэлектрических преобразователей сопротивления. Технические условия.  [c.821]

В табл. 16 приведены обобщенные результаты циклических испытаний при жестком симметричном нагружении технически чистого титана и сплава ПТ-ЗВ при 20°С. Сравнение циклической долговечности обоих сплавов в области малых улругопластических деформаций показывает, что и при 20 С у сплава ВТ1-0 с более низким сопротивлением ползучести долговечность оказывается ниже, чем у сплава ПТ-ЗВ с большим сопротивлением ползучести, несмотря на значительно более высокую предельную пластичность первого. Таким образом, имеющиеся в настоящее время различные уравнения расчета циклической долговечности материалов носят ограниченный характер и применять их для титановых сплавов с низким сопротивлением ползучести нужно с большой осторожностью.  [c.107]

Однако и у этого замечательного металла, по праву называющегося титаном, есть ахиллесова пята При температуре около 350° при небольших напря жениях он обнаруживает склонность к ползучести Для увеличения сопротивления ползучести, повыше ния прочностных и других свойств титана были соз даны титановые сплавы, которые могут работать при более высокой, чем технический титан, температуре, не становясь хрупкими и не корродируя. Легирующими присадками в этих сплавах служат алюминий, хром, марганец и железо. Для повышения жаропрочных свойств в сплавы вводят молибден и ванадий.  [c.114]

При расчете электропечей принято пользоваться величинои RfjRio, которую называют поправочным коэффициентом изменения электрического сопротивления в зависимости от температуры. В технической документации (каталогах, технических условиях, стандартах) на сплавы для нагревателей обычно приводят значения поправочного коэффициента сопротивления (см. гл. V). Это связано с тем, что пользоваться поправочным коэффициентом удобнее, так как температурная зависимость сопротивления электронагревательных сплавов имеет сложный характер (рис. 76), и ее трудно выразить с помощью т.к.с.  [c.8]

О. Г. Соколова [4] при изучении тонкой и сверхтонкой структур железомарганцевых (е+у) сплавов обнаружен ряд новых явлений найдены условия зарождения и стабилизации е-фазы. Обнаружено явление сверхпластичности в районе прямого и обратного 7 е-перехода и механические последействия (механическая память), выявлена роль указанных процессов на физические, механические и коррозионно-механические свойства. На основании этих исследований была предложена для технического использования немагнитная двухфазная сталь марки Г20С2. Исследование таких важных эксплуатационных характеристик как ударная вязкость, сопротивление вязкому и хрупкому разрушению, характер разрушения, проведенное в ЦНИИЧМ им. И. П. Бардина, расширило возможности практического использования этой стали.  [c.11]

Никелевые и медноникелевые сплавы по механическим, физикохимическим свойствам и областям применения можно условно разделить на следующие основные группы конструкционные, термоэлектродные, сплавы сопротивления и сплавы с особыми свойствами. К первой группе относятся монель-металл, мельхиор, никель технический, никель марганцевый и другие сплавы. Их применяют для изготовления деталей с повышенными механическими и коррозионными свойствами. Ко второй группе относятся хромель, алюмель, копель и сплавы для компенсационных проводов. Эти сплавы отличаются большой электродвижущей силой и высоким удельным электросопротивлением при малом температурном коэффициенте электросопротивления. Применяются они для из1Готовления прецизионных приборов, термопар и компенсационных проводов. Наконец, к третьей группе относятся главным образом нихромы, отличающиеся высокой жаропрочностью и жароупорностью и применяющиеся для изготовления разного рода электронагревательных приборов и электропечей. К этой группе сплавов нами условно отнесены сплавы типа манганин, константан, применяющиеся для реостатов и сопротивлений, а также жаропрочные и магнитные сплавы с особыми свойствами.  [c.282]


Лента для наплавки. Технические требования, предъявляемые к электродной ленте, еще не стандартизированы. Обычно для наплавки используют холоднокатаные ленты из конструкционной, инструментальной и пружинной стали (ГОСТ 2283—69), стальную коррозионностойкую ленту (ГОСТ 4986—70) и ленту высокого омического сопротивления из жаростойких сплавов. Для наплавки коррозионностойких слоев на корпусах атомных реакторов и химической арматуре предложен ряд специальных составов лент холодного проката.  [c.720]

Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]

Распространённым способом пайки мягкими припоями является пайка погружением в металлические ванны с расплавленным припоем. Электрическая пайка для мягких припоев имеет ограниченное применение (известно использование угольной дуги косвенного действия — дуговой горелки вместо газовой). Пайка сопротивлением и индукционная (токами высокой частоты) применяется очень редко. Иногда (например, для свинцовых труб и кабельных оболочек) производится пайка растиранием. Место пайки обливается расплавленным припоем, который формуется в полурас-плавленном состоянии растиранием концами или паклей. При мягкой пайке алюминия растирание в несколько иной форме применяется для разрушения плёнки окиси алюминия, которую не могут растворить флюсы при низких температурах мягкой пайки. На нагретое до температуры пайки место наносится припой и растирается проволочной щёткой или скребком до облуживания поверхности, после чего добавляется необходимое количество припоя (технически чистый цинк или различные легкоплавкие сплавы цинка, олова, иногда с добавкой алюминия). Для массового производства однотипных изделий часто применяется пайка нагревом изделий вместе с припоем, до некоторой степени аналогичная твёрдой пайке в печах. При этом способе изделия с припоем нагреваются до плавления припоя, затекающего в соединение и осуществляющего пайку. Процесс очень производителен и легко может быть механизирован, например, передвижением изделий ленточным транспортёром, проходящим через нагревательную печь.  [c.450]

Для солей никеля характерно двухвалентное состояние простые соли трехвалентного никеля получены не были. Никель широко применяется для получения высококачественных легированных сталей, обладающих различными техническими свойствами (прочность, вязкость, жаростойкость, химическая инертность и др.). Никель входит в состав ценных технических сплавов, обладающих высокой прочностью и химической стойкостью (нейзильбер), высоким электрическим сопротивлением (нихром, никелин), малым температурным коэффициентом расширения (инвар, платинит), химической стойкостью (монель-металл). Широко применяется нанесение на металлические поверхности защитных или декоративных покрытий из никеля — никелирование. Гидрат окиси никеля используется в щелочных (железоникелевых и кадмиевоникелевых) аккумуляторах.  [c.386]

Химико-термическая обработка позволяет придать поверхности деталей машин такие специальные свойства, как высокое сопротивление износу, высокую жаростойкость, высокую коррозионную стойкость и т. п. Поэтому применение ее оказывается не только эффективным, но в ряде случаев единственно возможным средством для решения технической проблемы. Расширение области химико-термической обработки стало возможным после усовершенствования ее технологии, т. е. процессов цементации, азотирования, цианирования, а также в результате разработки новых процессов диффузионного насыщения поверхности сплавов алли-тирования, диффузионного хромирования, борирования, силицирования, сульфационирования, насыщения несколькими элементами и т. д.  [c.246]

Зависимость усталостной прочности от температуры. Как отмечалось (см. табл. 34), усталостная прочность титановых сплавов падает по мере повышения температуры испытания. Наибольшее снижение предела усталости наблюдается. у технически чистого титана, наименьшее — у теплопрочных а + р-спла-вов. Относительное изменение предела усталости в зависимости от температуры для этих сплавов (ВТ6, ВТ8, ВТЗ-1, ВТ16 и ВТ22) показано на рис. 71, из которого следует, что повышение температуры до 400—450° С снижает усталостную прочность на 20— 25%. Это снижение несколько меньше, чем снижение временного сопротивления под влиянием повышения температуры до 400— 450° С. Интересным является то, что предел усталости, определенный на надрезанных образцах, значительно меньше зависит от температуры испытания, чем предел усталости гладких образцов. Из этих данных видно также, что изменение усталостной прочности более значительно при отрицательных температурах, чем в диапазоне 20—450°С. Многие исследователи уровень циклической прочности титановых сплавов при повышенных температурах  [c.157]

Добавка молибдена обеспечивает получение однородной мелкокристаллической структуры стали, увелич ивает прокаливаемость стали и способствует устранению хрупкости в результате отпуска. Молибден широко применяют при изготовлении конструкционных сталей, содержащих 0,15—0,50% Мо. В быстрорежущей стали молибден заменяет часть вольфрама. Молибден в сочетании с другими легирующими элементами находит широкое применение при производстве нержавеющих, жаропрочных, кислотостойких и инструментальных сталей и сплавов с особыми физическими свойствами. Добавка молибдена в чугун увеличивает его прочность и сопротивление износу. Для легирования стали обычно используют ферромолибден (табл. 91), а также металлический молибден (для легирования специальных сплавов), молибдат кальция и технический триоксид молибдена МоОз (>50 % Мо, —0,10 % С и 0,12 % S). В черной металлургии используют 95 % всего добываемого молибдена.  [c.282]


Известна чувствительность к КР поликристаллического алюминия зонной очистки (99,999 %) в 3,5 %-ном растворе Na I в воде (Томас, 1966), однако проблема КР как техническая для алюминиевых сплавов существует только применительно к высокопрочному состоянию. Современные высокопрочные сплавы разработаны на основе систем А1—Си А1—Си—Mg А1—Си—Mg— Si Al—Mg Al—Zn—Mg Al—Zn—Mg— u и Al—Li—Mg. У бинарных сплавов систем Al—Си Al—Mg Al—Zn и Al—Li сопротивление KP понижается с увеличением концентрации леги-  [c.232]

Свинец в сравнении с другими металлами обладает малой химической активностью и высокой коррозионной стойкостью. К недостаткам свинцовых оболочек, выполняемых из свинца при общем количестве примесей до 0,1%, в первую очередь следует отнести низкие механическую прочность, вибростойкость и сопротивление ползучести. Для повышения вибросюйкости оболочек наиболее эффективным средством является применение не технически чистого свинца, а его сплавов. Введение в состав свинца легирующих элементов сурьмы, олова, калмия, теллура, мышьяка и др., образующих различные химические соединения и твердые растворы, существенно улучшает механические свойства свинца. Легирующие присадки, как правило, располагаясь по границам зерен свинца, препятствуют tix росту и тем самым повышают вибростойкость оболочки. Химический состав сплавов свинца дан в табл. 5.11, а механические свойства и область применения некоторых марок свинца и его сплавов приведены в табл. 5.12.  [c.292]

К каждой катушке прикреплена этикетка, на которой указаны наименование и товарный знак предприятия-изготовителя условное обозначение проволоки электрическое еопротивление проволоки данной катушки температурный коэффициент сопротивления проволоки для сплавов, контролируемых по этому показателю масса проволоки на катушке штамп отдела технического контроля.  [c.398]

В рамках последней объединенной программы по кавитационной и ударной эрозии, осуществленной Комитетом американского общества по испытанию материалов (ASTM), двенадцать разных лабораторий испытывали три стандартных металла — нержавеющую сталь марки 316, технически чистый никель марки 270 и алюминиевый сплав 6061-Т 6511. В одиннадцати лабораториях использовались разнообразные вибрационные установки,, а в одной — струйная установка. Во всех лабораториях использовались образцы, изготовленные из одной партии металла, а во многих случаях — из одного прутка. Как сообщается в работе [31а] 1) во всех лабораториях получен один и тот же порядок расположения указанных трех материалов по их относительному сопротивлению кавитационному воздействию, 2) отношения сопротивлений никеля и нержавеющей стали, по данным вибрационных испытаний, хорошо согласуются, 3) те же отношения для алюминия и нержавеющей стали, определенные по испытаниям на разных вибрационных установках, имеют большой разброс, 4) результаты испытаний на струйной установке сильно отличаются от результатов испытаний на вибрационных установках.  [c.537]

Микротвердость характеризует сопротивление материала пластическому вдавливанию твердого наконечника (индентора). В практике измерений микротвердости наиболее широко применяется алмазная квадратная пирамида с углом в вершине 136° [13, 14, 15]. Испытания на микротвердость следует проводить в тех случаях, когда по техническим условиям нельзя измерять твердость макрометодами. Они рекомендуются для определения микротвердости отдельных структурных составляющих сплавов тонких поверхностных слоев, покрытий, тонких листовых материалов (фольги) для определения неоднородности микротвердости на отдельных участках деталей, для контроля мелких деталей и микрообразцов. Испытания микротвердости дают возможность косвенно оценивать хрупкость поверхностных слоев и некоторых материалов (стекол, минералов и др.) путем сопоставления длин диагоналей отпечатков, при которых в углах отпечатков начинают появляться трещины. В качестве харак-  [c.171]

Никелевые сплавы с высоким омическим сопротивлением. Твердые растворы на основе никеля обладают высоким электросопротивлением. Наиболее известнылш сплавами сопротивления являются сплавы никеля с хромом (нихромы). Электросопротивление этих сплавов в 10 раз больше, чем технического железа. Лучшим нихромом является сплав Х20Н80, работающий при телшературах 1050— 1100° С. В целях удешевления нихромов и улучшения их технологических свойств часть никеля заменяется железом. Нихромы "с железом называют ферронихром. Широкой известностью пользуется ферронихром Х15Н60, содержащий 25% железа. Он рекомендуется для работы при температуре 950—1000° С. Электросопротивление нихрома (ферронихрома) составляет 1,0—1,2 ом-мм и окалиностойкость до 1000—1100°С.  [c.325]

Краткий справочник газосварщика и газорезчика содержит основные данные о газах, газах-эаменителях и горючих жидкостях, применяемых при газопламенной обработке металла. В книге сообщены технические и технологические характеристики аппаратуры и оборудования для газовой сварки и резки, приведены правила эксплуатации и методы ремонта аппаратуры и оборудования, а также изготовления быстроизпашивающихся деталей. Приведены некоторые данные о материалах для ремонта и эксплуатации оборудования. По вопросам технологии сообщаются сведения о газовой сварке малоуглеродистых,средне- и высокоуглеродистых сталей, высоколегированных нержавеющих и жаропрочных сталей и сплавов с высоким омическим сопротивлением, а также о сварке чугуна и цветных металлов и сплавов сообща ются краткие сведения о сварке пластических материалов. Подробно освещены вопросы машинной и ручной кислородной разделительной резки сталей разной толщины, резки кислородом низкого давления, кислородно-флюсовой резки, резки кислородным копьем и поверхностно-кислородной резки. Приводятся данные о методах контроля сварных соединений.  [c.2]

Значение коэффициента запаса прочности зависит от многих факторов разброса характеристик прочности, присутствия в материале дефектов, допускаемых техническими условиями, степени схематизации расчетной процедуры и т. д. В соответствии с ГОСТ 14249—80 коэффициенты запаса прочности по временному сопротивлению для сталей = 2,4 тнтановых сплавов = = 3,0 алюминиевых сплавов — 3,5. Для сталей коэффициент запаса прочности по пределу текучести составляет п-,. = 1,5.  [c.277]

Кроме основных размеров, помимо состава (сплав), цветные катаные изделия характеризуются еще механич. качествами и состоянием поверхности. Следует различать изделия рыночного качества, не подлежащие приемке при сдаче заказчику, и изделия с технич. приемкой, к-рая производится на основании точно вырабатываемых технических условий, охватывающих указанные выше свойства изделия (или часть их). Основным механич. испытанием изделий цветной П. является проба на растяжение (разрыв), причем пользуются или всеми заранее утвержденными размерами образца или размерами по общепринятой ф-ле Ь=11,3 /Р, где Ь—расчетная длина образца, еС F—площадь поперечного сечения. В известных случаях образцы берутся из разных мест (в двух перпендикулярных направлениях). В технич. условия вводят величину временного сопротивления на разрыв В ( допуск) относительное остающееся далинение" при разрыве А от первоначальной длины образца ( допуск) и весьма нередко сумму К- -2А. Кроме того заранее устанавливается количество образцов для испытаний, допускаемый % образцов, не удовлетворяющих требованиям, и пр. Дополнительно к испытанию на растяжение, или независимо от него, весьма часто металл контролируют на выдавливание на конусе Эриксена (продавли-ванйе колпачка конусом до появления трещин), а также подвергают прокатанные  [c.58]


Смотреть страницы где упоминается термин Сплавы для технических сопротивлений : [c.527]    [c.289]    [c.75]    [c.526]    [c.144]    [c.385]    [c.57]    [c.184]    [c.97]    [c.555]    [c.160]    [c.319]   
Материалы в приборостроении и автоматике (1982) -- [ c.255 , c.256 ]



ПОИСК



Сплавы сопротивления



© 2025 Mash-xxl.info Реклама на сайте