Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двумерные уравнения движения идеальной жидкости

Двумерные уравнения движения идеальной жидкости  [c.146]

Плоские (двумерные) установившиеся движения идеальной сжимаемой жидкости описываются следующей системой дифференциальных уравнений уравнениями движения  [c.95]

Колебания оболочек, заполненных жидкостью. Свободные колебания заполненных частично или целиком сосудов имеют, естественно, два качественно различных участка спектра. При низких частотах колеблется жидкость, оболочка же является практически безынерционной (квазистатической). При высоких частотах, наоборот, колеблется оболочка, увлекая при этом в движение вместе с сосудом некоторый объем жидкости. Несмотря на возможные упрощения (идеальная жидкость, малые колебания), задачи гидроупругости являются далеко не простыми даже в случае осесимметричных колебаний оболочек вращения — ведь движение жидкости и тогда определяется двумерным волновым уравнением.  [c.256]


В частности, уравнения Эйлера движения двумерной идеальной жидкости  [c.300]

Соответствующая система уравнений движения идеальной жидкости принципиально может быть решена, однако получение решений, зависящих от четырех переменных (трех координат и времени), практически невозможно. Известны некоторые попытки получения численных решений в случае установившегося движения, а также при дополнительных упрощающих предположениях. Решение пространственных задач, несомненно, имеет методическую и теоретическую ценность, однако сложность соответствующих вычислений и частный вид получаемых результатов не удовлетворяют потребностей современной практики расчетов и экспериментальных исследований турбомашин. Другой, более распространенный, подход к расчету пространственного потока в решетках турбомашин состоит в решении предельных двумерных задач установившихся течений осесимметричного течения через решетки с бесконечным числом лопаток, двумерного течения на осесимметричных поверхностях токов в слое пере.менной толщины и вторичных течений в поперечных сечениях двумерного потока. Упомян гтые двумерные задачи допускают практически приемлемые методы решения и в своей совокупности дают приближенное решение задачи пространственного течения,  [c.273]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]


Курс содержит четыре части, В первой из них, общей для всех частей, излагаются основные понятия кинематики и основные уравнения движения произвольной сплошной среды. Вторая часть посвящена из-ложению элементов некоторых разделов гидродинамики, уравнения движения идеальной и вязкой жидкости, аэродинамика, волновые движения у пограничный слой. Особое внимание в этом разделе уделено плоскопараллельным движениям и двумерным движениям вдоль криволинейных поверхностей. Теория фильтрации, которой посвящена третья часть у рассматривается с точки зрения применения методов гидродинамики к решению технических краевых задач. Последняя, четвертая, часть посвящена уравнениям теории упругости и применению их к некотх)рым конкретным задачам. Втюрая и третья части а также частично третья часть, независимы друг от друга и могут изучаться отдельно.  [c.2]

Поскольку движение точечных вихрей на сфере является обобщением случая плоского вихревого течения, приведем кратко известные результаты для задачи о взаимодействии вихрей на плоскости. Простейший пример движения двух вихрей рассмотрен Гельмгольцем [23]. Г. Кирхгоф [27] установил гамильтоновость уравнений движения N точечных вихрей, а также нашел четыре первых интеграла этой системы, которые связаны с независимостью гамильтониана от времени и его инвариантностью относительно параллельного переноса и поворота системы координат. Интегрируемость задачи трех вихрей отметил А. Пуанкаре [32] (существуют три первых интеграла, находящихся в инволюции). В работе [18] система точечных вихрей рассматривалась в качестве модели двумерной турбулентности. Там же получено решение задачи о взаимодействии трех одинаковых вихрей. Авторы работы [19] на основе численных расчетов устанавливают стохастические свойства системы четырех вихрей и тем самым показывают, что двумерное течение идеальной жидкости в общем случае не является вполне интегрируемой системой. Как уже было отмечено, аналитическое доказательство неинтегрируемости системы четырех точечных вихрей на плоскости дано в работах Зиглина [9, 33]. Отметим также работы [20] и [22]. В [20] проинтегрирована в эллиптических функциях система трех одинаковых вихрей и показана хаотизация движения четырех вихрей равной интенсивности. В [22] рассматриваются интегрируемые случаи движения четырех вихрей.  [c.376]

Перенос связанных с конечномерным о. т. т. формул на гидродинамический случай иногда дает полезную информацию. Например, из формул для гауссовой кривизны группы С с односторонне инвариантной метрикой Арнольд получил оценки степени непредсказуемости переноса масс некоторыми периодическими по пространству двумерными течениями (см. [5] [8], Добавление 2). С уравнениями гидродинамики естественно связаны бесконечномерные группы. Но не все свойства конечномерных о. т. т. автоматически применимы к гидродинамическим уравнениям. Например, на конечномерных группах Ли с односторонне инвариантной метрикой геодезические этой метрики неограниченно продолжимы в обе стороны (по времени). Решения уравнения Эйлера движения идеальной однородной жидкости в трехмерной области О можно рассматривать как зависимость от времени касательного вектора к геодезической правоинвариантной римановой метрики (задаваемой кинетической энергией жидкости) на группе 50 О сохраняющих объемы взаимно однозначных преобразований 0- 0, гладких вместе с обратным преобразованием. Имеются основания предполагать,  [c.312]


Смотреть страницы где упоминается термин Двумерные уравнения движения идеальной жидкости : [c.146]    [c.16]   
Смотреть главы в:

Курс механики сплошных сред  -> Двумерные уравнения движения идеальной жидкости



ПОИСК



283 — Уравнения жидкости

ДВУМЕРНОЕ ДВИЖЕНИЕ Двумерное движение

Движение двумерное

Жидкость идеальная

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Идеальной жидкости движение

Идеальный газ в движении

Тор двумерный

Уравнение движения двумерное

Уравнение двумерное

Уравнения движения жидкости

Уравнения движения идеальной жидкости



© 2025 Mash-xxl.info Реклама на сайте