Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения идеальной жидкости полная система

В гидродинамике идеальной жидкости полная система состоит из уравнения движения, уравнения непрерывности и уравнения состояния среды ). В следующей главе мы подробно рассмотрим эту полную систему.  [c.16]

В случае вязкого газа полная система уравнений, характеризующая его движение и различные процессы в нем, сложная и уравнений много. В качестве примеров получим полную систему уравнений движения.вязкой несжимаемой жидкости, а также уравнения движения идеальной несжимаемой жидкости и идеального газа.  [c.557]


Как уже было указано в начале 1, состояние движущейся жидкости определяется пятью величинами тремя компонентами скорости V и, например, давлением р и плотностью р. Соответственно этому полная система гидродинамических уравнений должна содержать пять уравнений. Для идеальной жидкости этими уравнениями являются уравнения Эйлера, уравнение непрерывности и уравнение, выражающее адиабатичность движения.  [c.19]

В 1755—1756 гг. выходят в свет работы Л. П. Эйлера (1707—1783 гг.), где впервые приводится полная система дифференциальных уравнений равновесия и движения идеальной жидкости.  [c.7]

Подведем итоги. Полная система гидродинамических уравнений для идеальной сверхтекучей бозе-жидкости состоит из уравнений (8.4.63) со средними потоками (8.4.75) и дополнительного уравнения (8.4.66) для скорости сверхтекучего движения. Эти уравнения впервые были получены Ландау [22] в рамках феноменологической теории. Впоследствии уравнения Ландау были выведены Боголюбовым [5], который использовал микроскопический гамильтониан и явные выражения для операторов потоков. Хотя вывод Боголюбова был основан на той же идее, что скорость сверхтекучего движения связана с фазой волновой функции конденсата, изложенный здесь подход обладает тем преимуществом, что в нем не приходится иметь дело с громоздкими формулами для операторов микроскопических потоков. Мы видели.  [c.199]

Полная система уравнений движения. Записанные в эйлеровых и лагранжевых координатах уравнения движения (1.39) или (1.40) для идеальной жидкости и (1.41) для вязкой еще не образуют полной системы уравнений, описывающей изменение в пространстве и во времени основных характеристик течения жидкости — поле скорости, давления, плотности. Для замыкания системы уравнений движения  [c.31]

Для покоящейся жидкости система (5,2) легко замыкается. Вместе с уравнением неразрывности система (5.2) становится полной и в некоторых случаях движения идеальной жидкости и газа. В других случаях требуется привлечь дополнительные связи и гапотезы.  [c.39]

Таким образом, полная система уравнений, описывающих движение однородной несжимаемой идеальной или вязкой жидкости, состоит из уравнений Эйлера (1.39) или Навье — Стокса (1.41) и уравнения несжимаемости (1.15) и содержит четыре неизвестных ф нкцин и, р. В табл. 2 эта система записана в декартовых и цилиндрической системах координат для общего случая вязкой жидкости. Уравнения для идеальной жидкости получаются при V - 0.  [c.32]


Указанное свойство позволяет в рассматриваемом случае плоского стационарного движения жидкости в области пограничного слоя заменить в правой части первого уравнения системы (3) частную производную др1дх на полную производную dpidx. Согласно тому же свойству, распределение давления р (х) вдоль пограничного слоя совпадает с распределением давления во внешнем безвихревом потоке. Это распределение по теореме Бернулли ( 20), справедливой для набегающего на тело безвихревого потока идеальной жидкости, можно связать со скоростью во внешнем потоке. Благодаря тонкости пограничного слоя, можно снести эту скорость на поверхность тела, положив ее равной той, зависящей только от продольной координаты X скорости скольжения U (х) жидкости по поверхности тела, которая имела бы место в идеальной жидкости, т. е. при отсутствии пограничного  [c.444]

Мы получили систему четырех уравнений, которая при из вестных массовых силах Ру, содержит пять неизвестных функций и, V, IV, р, р. Такая система все еш е незамкнута. Полная система уравне- В некоторых случаях можно дополнитель-ний движения идеальной но считать, что рассматриваемая идеаль-несжииаемои (вообще не- ная жидкость является несжимаемой, т. е. однородной) жидкости такой жидкостью, плотность каждой ча-  [c.163]

Результаты, полученные в полной нелинейной постановке, весьма немногочисленны. В [17] с использованием локального метода конечных элементов рассмотрена задача о движении крылового профиля под свободной поверхностью тяжелой жидкости конечной глубины. Решение в данной работе строится с приближенным учетом системы волн, возникающих в дальнем поле за профилем, и полученной на основе линейной теории. Для решения этой же задачи в [18, 19] использовался метод граничных интегральных уравнений. В [20] рассмотрена задача об определении гидродинамических реакций контура, движущегося на небольшой глубине. Жидкость идеальна, а распространение волн, генерируемых телом, описывается уравнениями Тулина, модифицированными с учетом ненулевого угла атаки. Численное решение осуществляется с помощью панельного метода, при этом используются нелинейные граничные условия на свободной поверхности и постулат Кутта - Жуковского в задней кромке профиля. Результаты расчетов хорошо согласуются с экспериментальными данными. Следует отметить, что волны, представленные в этой работе, далеки от максимально возможных для поверхностных гравитационных волн.  [c.127]


Смотреть страницы где упоминается термин Уравнения движения идеальной жидкости полная система : [c.31]   
Механика сплошной среды Т.1 (1970) -- [ c.163 ]



ПОИСК



283 — Уравнения жидкости

Движение системы

Жидкость идеальная

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Идеальной жидкости движение

Идеальный газ в движении

Полная система уравнений движения

Система жидкость — пар

Система идеальная

Системы Уравнение движения

Уравнения движения жидкости

Уравнения движения идеальной жидкости

Уравнения движения идеальной жидкости в цилиндрической и сферической малых деформаций (полная система

Уравнения движения идеальной жидкости при баротропных процессах (полная система)



© 2025 Mash-xxl.info Реклама на сайте