Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Эйлера движения идеальной жидкости

Уравнение Эйлера движения идеальной жидкости  [c.86]

Уравнения (3.3.3) являются уравнениями Навье-Стокса движения вязкой жидкости, которое в случае v = О переходит в уравнения Эйлера движения идеальной жидкости. Уравнение (3.3.4) есть уравнение несжимаемости жидкости.  [c.184]

Казалось бы, в этом случае мы должны получить очень хорошее приближение, целиком отбрасывая силы вязкости, пропорциональные коэффициенту кинематической вязкости V. Однако так делать нельзя, потому что при этом получаются уравнения Эйлера движения идеальной жидкости, решения которых не могут, вообще говоря, удовлетворить тем граничным условиям прилипания к стенкам, которые мы имеем для случая вязкой жидкости, движущейся хотя бы и при очень больших числах Рейнольдса.  [c.542]


Дифференциальное уравнение установившегося движения идеальной жидкости следствие уравнений Эйлера в гидродинамике)  [c.73]

Поскольку уравнение (6.27) на внешней границе должно переходить в уравнение, описывающее движение идеальной жидкости,, т. е. уравнение Эйлера  [c.149]

В некоторых случаях, указанных, в частности, в 1, конечномерные гидродинамические модели, полученные методом Галеркина, сохраняют фундаментальные свойства исходных уравнений движения. В этом параграфе будут построены простейшие конечномерные аналоги основных уравнений гидродинамики несжимаемой жидкости, т, е. уравнений Эйлера движения идеальной однородной жидкости, уравнений Буссинеска движения идеальной неоднородной жидкости в гравитационном поле и уравнений магнитной гидродинамики (МГД). Модели имеют удобную механическую интерпретацию и названы простейшими  [c.26]

Уравнения Эйлера — движения идеальной сжимаемой жидкости получим, положив в уравнении (4.36) г = 0.  [c.77]

Уравнение (7-1.6) представляет собой так называемое уравнение Эйлера или уравнение движения идеальной жидкости (т. е. жидкости с ц = О, у которой, следовательно, напряжение всегда изотропно, Т = —р1). Литература по решению краевых задач для уравнения (7-1.6) весьма обширна и составляет содержание классической гидромеханики. Одним из лучших руководств-по этому предмету является монография Ламба [1].  [c.255]

Для того чтобы получить уравнения, описывающие движение вязкой жидкости, необходимо ввести дополнительные члены в уравнение движения идеальной жидкости. Что касается уравнения непрерывности, то, как явствует из самого его вывода, оно относится в равной мере к движению всякой жидкости, в том числе и вязкой. Уравнение н<е Эйлера должно быть изменено.  [c.71]

Уравнение (2.26а) для движения идеальной жидкости называется уравнением Эйлера.  [c.141]

Уравнение (9.1) называется уравнением Эйлера оно относится к движению идеальной жидкости.  [c.288]

Это уравнение движения идеальной жидкости часто называют уравнением Эйлера.  [c.86]

Полученная система уравнений (136) устанавливает связь между проекциями объемных сил и скоростей, давлением и плотностью жидкости. Эти уравнения предложены действительным членом Петербургской академии наук Леонардом Эйлером в 1755 г. и опубликованы им в 14-м томе Известий Петербургской Академии наук в 1769 году. Поэтому приведенные выше дифференциальные уравнения движения идеальной жидкости, ставшие научной основой для изучения главнейших вопросов гидродинамики, и называются уравнениями Эйлера.  [c.108]


В 1755—1756 гг. выходят в свет работы Л. П. Эйлера (1707—1783 гг.), где впервые приводится полная система дифференциальных уравнений равновесия и движения идеальной жидкости.  [c.7]

Выпишем нелинейную систему уравнений одномерных движений идеальной сжимаемой жидкости в случае баротропных процессов. Она состоит из уравнения Эйлера  [c.221]

Запишем уравнения движения идеальной жидкости в форме Эйлера в проекциях на оси г и и без учета радиальных составляющих скоростей, но с введением массовой силы F  [c.193]

Уравнения (2.22) являются уравнениями движения идеальной жидкости в форме Эйлера.  [c.37]

Уравнение движения идеальной жидкости в форме Эйлера  [c.58]

Подробный анализ явления гидравлического удара можно сделать при помощи волнового уравнения, которое можно получить из уравнения движения идеальной жидкости в форме Эйлера,  [c.120]

В случае безвихревого движения идеальной жидкости легко указать первый интеграл уравнений движения. Для этого возьмем уравнение Эйлера в форме Громека — Ламба [(10) гл. III]  [c.163]

Первые два из них выражают условие прилипания вязкой жидкости к твердой стенке (у = 0) — контуру обтекаемого тела. Третье (у с ) представляет требование асимптотического стремления продольной скорости и в области пограничного слоя к скорости V (х) на границе пограничного слоя с безвихревым потоком. Это граничное условие можно интерпретировать как операцию сращивания (иногда говорят сшивания ) решения уравнений Прандтля движения вязкой жидкости в пограничном слое внутренняя область со своей бесконечностью — границей пограничного слоя) с решением уравнений Эйлера для безвихревого обтекания тела идеальной несжимаемой жидкостью внешняя область с бесконечностью в набегающем на тело невозмущенном однородном потоке).  [c.446]

Фундамент аналитической гидромеханики с четким понятием внутреннего гидродинамического давления, со строгим и ясным выводом уравнений движения идеальной жидкости содержится в нескольких работах Эйлера, относящихся к 1750—1766 гг.  [c.187]

Лагранж вывел дифференциальные уравнения движения идеальной жидкости в новой форме, положив в основу метод, который теперь носит его имя. В этом методе, встречающемся и в работах Эйлера, исследуются изменения, характеризующие движение некоторой индивидуальной частицы жвд-  [c.188]

Например, уравнения Эйлера движения тверого тела имеют своим аналогом в гидродинамике уравнения Эйлера движения идеальной жидкости. Теореме Эйлера об устойчивости вращений вокруг большой и малой осей эллипсоида инерции отвечает в гидродинамике слегка обобщенная теорема Релея об устойчивости течений без точек перегиба профиля скоростей и т. д.  [c.283]

ЧТО для типичного гладкого начального поля скорости в D классическое решение уравнения Эйлера движения идеальной жидкости существует лишь конечное время (зависящее от начальных данных), т. е. что почти все геодезические на группе SDiff D нельзя неограниченно продолжать.  [c.313]

Для того чтобы составить дифференциальные уравнения движения, возьмем прямоугольную декартову систему координат и мысленно выделим из жидкости э.темент в форме прямоугольного параллелепипеда (фиг. 210). Выражения для массы элемента, проекций его ускорения на оси координат, проекций объемных сил запишутся здесь так же, как п прп выводе уравнений Эйлера для идеальной жидкости (глава IV). Отлич1 е от вывода уравнений Эйлера будет иметь место только в выранхвнпях для поверхностных сил.  [c.524]

Согласно только что отмеченному основному свойству пограничного слоя входящее сюда давление/ может быть заменено своим выражением из уравнения Эйлера движения идеальной несжимаемой жидкости во внешней области [ /(х, Г) обозначает продольную скорость внешнего потока, и ее не с,тедует смешивать с ранее исп0. 1Ь30ванным обозначением для масштаба продольных скоростей]  [c.561]

Перенос связанных с конечномерным о. т. т. формул на гидродинамический случай иногда дает полезную информацию. Например, из формул для гауссовой кривизны группы С с односторонне инвариантной метрикой Арнольд получил оценки степени непредсказуемости переноса масс некоторыми периодическими по пространству двумерными течениями (см. [5] [8], Добавление 2). С уравнениями гидродинамики естественно связаны бесконечномерные группы. Но не все свойства конечномерных о. т. т. автоматически применимы к гидродинамическим уравнениям. Например, на конечномерных группах Ли с односторонне инвариантной метрикой геодезические этой метрики неограниченно продолжимы в обе стороны (по времени). Решения уравнения Эйлера движения идеальной однородной жидкости в трехмерной области О можно рассматривать как зависимость от времени касательного вектора к геодезической правоинвариантной римановой метрики (задаваемой кинетической энергией жидкости) на группе 50 О сохраняющих объемы взаимно однозначных преобразований 0- 0, гладких вместе с обратным преобразованием. Имеются основания предполагать,  [c.312]


Интегрирование уравнений движения вязкой жидкости можно осуществить аналогично интегрированию уравнений Эйлера для идеальной жидкости. Интеграл Бернулли для элементарной струйки вязкой жидкости при р onst имеет вид  [c.21]

Возможность существования такой отграниченной области вихревого движения является следствием того, что турбулентное движение может рассматриваться как движение идеальной жидкости, описывающееся уравнениями Эйлера ). Мы видели ( 8), что для движения идеальной жидкости имеет место закон сохранения циркуляции скорости. В частности, если в какой-ипбудь точке линии тока ротор скорости равен нулю, то это имеет место и вдоль всей этой линии. Напротив, если в какой-нибудь точке линии тока rotv 0, то он отличен от пуля вдоль всей линии  [c.207]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

В случае, если жидкость является идеальной и несжимаемой (р = onst), задача интегрирования уравнении движения (81) сильно упрощается. На это указал впервые еще Эйлер, чье имя носят уравнения движения (81). Аналитические методы решения уравнений движения идеальной жидкости получили большое развитие, и в настоящее время изучено множество случаев обтекания тел (крылья, решетки крыльев, тела осесимметричной формы, всевозможные каналы и т. п.). Из совокупности работ этого направления образовалось важное направление современной механики — классическая гидродинамика.  [c.91]

Следующий этап в развитии механик жидкости относится к XVni в. и связан с именами членов Петербургской академии наук Даниила Бернулли (1700—1782 гг.) и Леонарда Эйлера (1707—1783 гг.), разработавших общие уравнения движения идеальной жидкости и тем самым положивших начало теоретической гидроаэродинамике. Однако применение этих уравнений (так же как и разработанных несколько позже уравнений движения вязкой жид-  [c.5]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

Преобразуя аналогично остальные уравнения Эйлера, запишем уравнения движения идеальной жидкости в форме Громека  [c.88]

Данное уравнение принято называть уравнением Бернулли. Однако Д. Бернулли рассматривал только соотношение (3-60), приведенное в il2 (для случая установившегося движения идеальной жидкости, подверженной действию только сил тяжести). Уравнения, описываемые в настоящем параграфе и в 3-16 (а также приводимые далее в гл. 9 для неустановившегося движения), были составлены в дальнейшем на основании как работ Д. Бернулли, так и работ других авторов (Эйлера, Кориолиса, Буссинеска, Вейсба-ха й др.).  [c.110]

Перейдем к изучению движения идеальных сред. Установим важное конечное соотношение — первый интеграл уравнений движения идеальной жидкости или газа в случае установившихся движений. Для этого возьмем уравнения движения Эйлера в форме Громекп — Лемба  [c.20]

Оврия исследований Эйлера о гидравлических машинах (турбины водометного судна), где, казалось бы, автор занимается рассмотрением прикладных вопросов об изыскании наивыгоднейших конструкций гидрореактивной турбины и корабля, приводимого в движение водометным двигателем, подвела его вплотную к установлению основных уравнений движения идеальной жидкости. Эти исследования можно назвать гидравлическими потому, что в них рассматривается одномерное течение жидкости в трубке. Иногда Эйлер пользуется энергетическим методом, который широко применяли оба Бернулли, Основным же методом является принцип ускоряющих сил, который отличается от второго закона Ньютона тем, что к числу активных сил прибавляются явно оговоренные силы реакции связей (стенок сосуда).  [c.182]


Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В середине XVIII в. Эйлер вывел общие уравнения движения идеальной жидкости. Даламберу, Эйлеру и Лагранжу принадлежат и первые исследования потенциального движения идеальной жидкости. На этой основе Лагранж построил теорию так называемых длинных волн. Рассматривалось движение волн в бесконечном прямолинейном канале постоянной глубины k. Направим ось Ох вдоль свободного уровня в его невозмущенном положении, а ось Оу — вертикально вверх и будем считать потенциал скоростей F функцией 01 X, у ж времени t. Величина у не должна значительно отличаться от нуля, поэтому разлагаем F по степеням у  [c.271]


Смотреть страницы где упоминается термин Уравнение Эйлера движения идеальной жидкости : [c.58]    [c.521]    [c.74]    [c.70]    [c.253]    [c.6]    [c.187]   
Смотреть главы в:

Техническая гидромеханика  -> Уравнение Эйлера движения идеальной жидкости



ПОИСК



283 — Уравнения жидкости

Вариационный принцип ДАламбера-Лагранжа в задаче о движении идеальной несжимаемой жидкости Поле реакций связей. Уравнение Эйлера

Дифференциальные уравнения движения идеальной (невязкой) жидкости (уравнения Эйлера)

Дифференциальные уравнения движения идеальной жидкости (уравнения Л. Эйлера)

Жидкость идеальная

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Идеальной жидкости движение

Идеальный газ в движении

Модель идеальной жидкости. Уравнения движения Эйлера

Основы гидродинамики идеальной жидкости Дифференциальные уравнения движения идеальной жидкости в форме Эйлера

Уравнение Эйлера

Уравнение движения идеальной жидкости в форме Эйлера

Уравнения Эйлера движения идеальной

Уравнения Эйлера идеальной жидкости

Уравнения движения Л. Эйлера для идеальной (вязкой) жидкости

Уравнения движения жидкости

Уравнения движения идеальной жидкости

Уравнения движения идеальной жидкости в цилиндрической и уравнения Эйлера)

Эйлер

Эйлера уравнение движения

Эйлера уравнения движения идеальной сжимаемой жидкости

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте