Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ускорение в различных случаях движения

Ускорение в различных случаях движения 53  [c.150]

Пользуясь выводами предыдущего параграфа, определим ускорения в различных случаях движения точки.  [c.150]

В общем случае движения плоской фигуры мгновенный центр скоростей точка P--W мгновенный центр ускорений—точка Q—являются различными точками этой фигуры (рис. 72). Эти точки совпадают, если плоское движение вырождается во вращательное движение вокруг неподвижной оси.  [c.175]


Заметим, что при мгновенном поступательном движении только скорости точек одинаковы, а их ускорения в общем случае различны.  [c.143]

Простое преобразование координат, с помощью которого осуществляется переход от движущегося тела к неподвижному, невозможно, если имеется ускорение в относительном движении тела и основной массы жидкости, поскольку гидродинамические явления зависят от ускорения. В этом случае возникают дополнительные массовые силы и различные явления, происходящие в реальном течении, например, нарастание пограничного слоя и его отрыв, зависят от времени.  [c.652]

Переход от кинематического описания механического движения тел к динамическому требует введения двух новых понятий — силы и массы. Действительно, рассматривая движение тел, мы в первую очередь наблюдаем взаимодействие между ними, проявляющееся или в деформации тел, или в изменении состояния их механического движения (т. е. в изменении скоростей движения). В первом случае мы имеем дело со статическим проявлением механического взаимодействия, возникающего, как правило, в результате непосредственного контакта между взаимодействующими телами (например, стол давит на пол). Во втором случае взаимодействие между телами проявляется динамически как процесс переноса механического движения от одного тела к другому, как сообщение им ускорений. В этом случае механическое взаимодействие между телами может осуществляться как путем непосредственного контакта тел, так и посредством различных силовых полей.  [c.28]

Следует обратить внимание на то, что векторы и и ьу, представляющие скорость и ускорение некоторой точки поступательно движущегося тела, можно переносить в любую точку этого тела. Общую для всех точек поступательно движущегося тела скорость и общее для всех этих точек ускорение мы можем назвать скоростью и ускорением тела. Однако такая терминология допустима лишь в случае поступательного движения тела. Во всех других случаях движения тела, как мы увидим в дальнейшем, различные точки тела движутся с разными скоростями и ускорениями, а поэтому понятия о скорости и ускорении тела для этих движений теряют смысл.  [c.291]

Именно на электронах, испускаемых при радиоактивном распаде, были впервые обнаружены отклонения от постоянства отношения F/j. Этот результат был получен при изучении траекторий движения электронов в магнитных полях. Как мы видели, в этом случае ускорения могут быть определены (если независимо измерена не изменяющаяся при движении в магнитном поле величина скорости частиц) непосредственно по смещению пятна на экране. Результаты таких опытов, произведенных с различными частицами, независимо от их происхождения (получены ли они с помощью ускорителей или возникли при радиоактивном распаде), показали, что при различных, но постоянных значениях и, сравнимых с с, отношение F/j не остается постоянным, а оказывается тем больше, чем больше и. Было установлено, что  [c.91]


Наличие трения покоя приводит к тому, что во всех случаях, где действующие силы должны вызвать скольжение соприкасающихся поверхностей, нужны конечные силы для того, чтобы вызвать движение. Это обстоятельство играет важную роль в ряде случаев, например, в различных измерительных приборах. Большинство измерительных приборов, не только механических, но и электрических, основано на измерении смещений стрелки или другого указателя под действием тех или иных сил. Измеряя смещения указателя, мы определяем силы, вызвавшие это смещение, и по ним судим об измеряемой величине (давлении, ускорении, силе тока и т. д.). Но движение указателя в обычных технических приборах почти всегда связано с возникновением скольжения. Ось стрелки прибора обычно укрепляется в подшипниках, и вращение стрелки связано со скольжением оси в подшипнике. Движение стрелки может начаться только после того, как действующая на стрелку сила (которую мы и хотим измерить) достигнет некоторого конечного значения, превосходящего максимальную силу трения покоя в подшипниках з).  [c.202]

С абсолютным ускорением дело обстоит иначе. Только в рассмотренном выше частном случае поступательного переносного движения абсолютное ускорение представляет собой геометрическую сумму относительного и переносного ускорений. В случае же непоступательного переносного движения, когда скорости движения различных точек движущейся системы отсчета относительно неподвижной различны, к относительной скорости рассматриваемой точки тела прибавляется скорость переносного движения, которая зависит от  [c.344]

Основная заслуга Ньютона состоит в том, что он указал на произведение массы на ускорение как на величину, которая может иметь одинаковое значение для разных тел и различных движений, происходящих в разных местах пространства с различными скоростями, и главное как на величину, которую можно в ряде случаев определять в опытах в функции от времени, положения и скорости точек системы.  [c.27]

Обычно заданными являются силы полезных сопротивлений, приложенные к ведомому звену механизма (исполнительному органу). В тех случаях, когда звенья механизма имеют неравномерное движение, давления (реакции) в кинематических парах зависят не только от внешних, приложенных к механизму сил, например от сил полезных сопротивлений, но и от сил инерции, возникающих из-за того, что точки звеньев имеют различные по величине и направлению ускорения.  [c.15]

Движение ведущего и ведомого звеньев кулачкового механизма может быть задано аналитически в виде уравнения движения или графически в виде диаграммы перемещений, диаграммы скоростей или ускорений. Характер этих уравнений или диаграмм может быть различным выбор их определяется обычно соображениями наибольшей целесообразности того или иного закона движения в каждом отдельном случае. Этот закон движения должен удовлетворять основным требованиям рабочего процесса, связанного с движением звена механизма.  [c.126]

Выбирая для отдельных участков диаграммы перемещений ведомого звена различные кривые, можно получить движение по самым разнообразным законам. Например, можно начать движение ведомого звена по параболическому закону, затем перейти плавно на синусоидальный закон и т. п. Рассмотренные законы движения показывают, что спокойный и безударный ход толкателя можно обеспечить только при условии, если кривая касательных ускорений а (ф) — непрерывная функция. В этом случае первый и второй интегралы движения (кривые скорости и(ф) и перемещений 8(ф) будут также непрерывными функциями. Поэтому при проектировании кулачкового механизма с динамической точки зрения целесообразно исходить из графика ускорений. Например, можно задаться диаграммой ускорений в виде двух равных равнобочных трапеций. Эта диаграмма, отличаясь простотой построения, дает плавное изменение ускорения. Диаграмму скоростей можно получить графическим или аналитическим интегрированием диаграммы ускорений. Интегрирование диаграммы скоростей дает график перемещений.  [c.128]


Поскольку зазоры в трансмиссиях в общем случае различны, то запуск машины будет складываться из следующих этапов ускоренное движение ротора двигателя за счет зазоров в трансмиссии  [c.76]

Силы инерции, которые приходится учитывать при исследовании движения механизма, являются массовыми силами, так как в общем случае ускорения отдельных точек движущегося тела различны. При исследовании механизмов приходится приводить силы инерции отдельных материальных точек звена к одной силе и к одной паре сил. Такая сила называется в механике главным вектором приведенных сил инерции, а момент, создаваемый приведенной парой сил, получил название главного момента сил инерции материальных точек звена.  [c.18]

Исследование величин скорости и ускорения движения различных звеньев является более легкой задачей, чем определение перемещений пространственных механизмов. Эта задача может быть решена составлением систем уравнений, полученных дифференцированием приведенных выше уравнений. В последнем случае получаются системы уравнений, линейных относительно величин скорости и ускорения движения.  [c.111]

Значительно труднее выбрать метод и режим ускоренных испытаний какой-либо машины, предназначенной для выполнения разнообразных операций, отличающихся существенно различными условиями нагружения. В таком случае задача сводится к выявлению нагруженности компонентов машины в различных условиях эксплуатации, количественной оценке эксплуатационных воздействий, оказывающих наибольшее разрушающее влияние, и к учащенному их воспроизведению при испытаниях. При этом учитывается имеющийся опыт испытаний и эксплуатации машин. Известно, например, что при не-установившемся режиме работы автотракторного двигателя износ цилиндров ускоряется в 3—5 раз по сравнению с работой на постоянном режиме, эквивалентном по расходу топлива [1]. Движение транспортной машины с частыми троганиями и остановками ускоряет износ двигателя, сцепления, трансмиссии и тормозов. Регулируя продолжительность цикла включения муфты сцепления, можно не только влиять на нагрев и износ ее элементов, но и изменять величину всплесков крутящего момента, воспринимаемых трансмиссией, и т. д.  [c.137]

Критерии динамической оптимальности. При менение вариационных методов для отыскания оптимальных законов движения обычно предполагает использование сред неинтегральных, обобщенных характеристик динамического ре жима работы механизма в качестве критериев оптимальности Конкретный выбор критерия динамически оптимального дни жения зависит от условий задачи. Так, если скорость ведуще го звена полагается известной, то критерии, как правило, ха рактеризуют динамический режим на ведомом звене. При этом в зависимости от условий работы механизма критерии могут характеризовать величины среднеинтегральных ускорений (сил инерции), рывков или величину динамической мощности ведомого звена при различных условиях (задачи 1—4). Отметим, что требование минимизации среднеинтегральных ускорений ведомого звена совпадает с требованием минимизации инварианта пиковой скорости ведомого звена, а эта величина также в ряде случаев может служить критерием оптимальности. Уменьшение инварианта пиковой скорости позволяет снизить углы давления, что представляет существенный интерес для проектирования кулачковых механизмов станков-автоматов.  [c.16]

Сущность ЭТОГО метода заключается в следующем. При установившихся автоколебаниях, если считать их гармоническими, можно принять, что работа возмущающих сил за период колебания равна работе демпфирующих сил за тот же период. В данном случае в качестве возмущающих сил являются переменная подъемная сила Ry, обусловленная периодическим смещением самих трубок, и переменная сила Р , зависящая от ускорения колебательного движения трубки и обусловленная различным расположением оторвавшихся пограничных слоев относительно трубки с обеих ее сторон Силы внутреннего трения в материале трубки и трения в ее опорах являются основными демпфирующими силами кроме того, аэродинамическая сила Р. , зависящая от скорости колебательного движения, также является демпфирующей силой при автоколебании конденсаторных трубок. Уравнение баланса работ L этих сил запишется следующим образом  [c.141]

Для того чтобы использовать первое преимущество, обычно гак или иначе интенсифицируют коррозионный лроцесс. В этом случае особое внимание должно быть уделено тому, чтобы при подборе средств ускорения реального процесса не изменить принципиально его механизм. Например растворы соляной жис-лоты значительно увеличивают скорость коррозии легких сплавов по сравнению с атмосферными условиями, однако результаты испытаний в этих растворах не могут характеризовать поведения металла в практике, так как механизм коррозии в атмосферных условиях и в растворах кислот различный. Следовательно, для того чтобы интенсифицировать процесс коррозии в лабораторных условиях, необходимо знать его механизм и усиливать действие только тех факторов, которые не изменяют его принципиально. К числу важнейших внешних факторов, влияющих на коррозию металлов в электролитах, относят [1] 1) природу электролита, 2) концентрацию электролита, 3) проводимость электролита, 4) движение раствора, 5) концентрацию окислителей и кислорода, 6) концентрацию водородных ионов (pH), 7) температуру, 8) влажность и 9) размер частиц, контак-тируемых (С металлом. Рассмотрим несколько подробнее их влияние на коррозионные процессы, используя параллельно (для примера) данные [73] о влиянии температуры, концентрации кислорода, скорости движения жидкости и количества продуваемого воздуха на коррозию монель-металла в 5%-ном растворе серной кислоты (рис. И).  [c.60]


В заключение сделаем одно замечание, касающееся общего случая движений со скоростями у, сравнимыми с с, когда эти движения происходят как с нормальным, так и с тангенциальным ускорениями. Мы исключили этот случай из рассмотрения вследствие его сложности. Чем объясняется сложность этого обнгего случая, видно из сопоставления двух рассмотренных частных случаев только нормального и только тангенциального ускорений. Вследствие того, что связь между ускорением и силой в этих двух случаях оказывается различной, как это видно из сопоставления выражений (3.31) и (3.32), отношение / // оказывается не равным отношению F IF/. Значит, в этом общем случае направление ускорения ие совпадает с направлением силы. Иными словами, хотя векторное уравнение (3.21) и справедливо в общем случае, но определяемый из этого уравнения вектор полного ускорения в общем случае не совпадает по направлению с вектором силы.  [c.104]

Случай вес й. В движении тяжелых тел мы различаем два различных элемента вес тела и начальные условия его движения. Галилей впервые установил законы свободного падения тела. Он показал, что при таком падении тела наращения скорости в равные промежутки времепи по вертикали остаются постояпнымй это значит ускорение этого движения остается постоянным. Далее, для изучения общего случая движения тела, как угодно брошенного, он руководился понятием о независимости действий. Он усмотрел, что в общем случае движения произвольно брошенного тела должно происходить то ке, что и при свободном падении его ускорение долясно оставаться постоянным, т. е. оно не зависит ни от каких обстоятельств, в том числе и от скорости тела в каждый момент. Опыт вполне подтвердил эту интуицию.  [c.301]

Если действие сил является динамической причиной движения материальной точки с некоторым ускорением, то движение системы отсчета является кинематической причиной установления этого ускорения. В том случае, ес,тш рассматривается движение какой-либо материальной точки относительно различных неннерцмальных систем отсчета, силы, действующие на точку со стороны других тел, определяются соответствующими ф зическкм с законами вэа/ модейстаия, а потому они имеют одни и те же значения независимо от того, относительно какой системы отсчета рассматривается движение точки.  [c.331]

В этом случае мгновенный центр скоростей нахолится в бесконечно удаленной точке движущейся плоскости, как и при поступательном движении. Однако в отличие от поступательного движения среды теперь ее точки могут иметь различные ускорения. Движение в такой момент можно назвать мгновенно поступательным.  [c.37]

Как уже было сказано (см. 20), вес G = mg всякого материального тела зависит от местонахождения этого тела на земном шаре, и ускорение g падающих тел не вполне одинаково в различных местах. Это обстоятельство вследствие небольших (сравнительно с Землей) размеров взвешиваемого тела тоже никак не может повлиять на положение его центра тяжести. Но бывает такое состояние материальных тел и механических систем, при котором понятие вес вообш,е теряет смысл. Вспомним, например, состояние невесомости, о котором рассказывают наши космонавты. Кроме того, в мировом пространстве существуют области, где в состоянии невесомости пребывает всякое тело независимо от его движения например, точка пространства, в которой материальное тело притягивается к Земле и к Луне с равными и противоположно направленными силами. В таких случаях теряет всякий смысл и наше определение центра тяжести как центра параллельных сил, но сама точка продолжает существовать и не теряет своего значения. Поэтому целесообразно определять эту точку в зависимости не от веса, а от массы частиц. Понятие центр масс шире понятия центр тяжести, так как масса не исчезает даже при таких обстоятельствах, при которых вес неощутим. Понятие центр масс имеет применение во всякой системе материальных точек, тогда как понятие центр тяжести выведено для системы сил, приложенных к одному неизменяемому твердому телу  [c.135]

Теория размерности позволяет получить выводы, вытекающие из возможности применять для описания физических зако-номернсстей произвольные или специальные системы единиц измерений. Поэтому при перечислении параметров, определяющих класс движений, необходимо указывать все размерные параметры, связанные с существом явления, независимо от того, сохраняют ли эти параметры фактически постоянные значения (в частности, это могут быть физические постоянные) или они могут изменяться для различных движений выделенного класса. Важно, что размерные параметры могут принимать разные численные значения в различных системах единиц измерения, хотя, возможно, и одинаковые для всех рассматриваемых движений. Например, при рассмотрении движений, в которых вес теп существен, мы обязательно должны учитывать в качестве физической размерной постоянной ускорение силы тяжести g, хотя величина g постоянна для всех реальных движений. После того как ускорение силы тяжести g введено в качестве определяющего параметра, мы можем, ничего не усложняя, искусственно расширять класс движений путём введения в рассмотрение движений, в которых ускорение g принимает различные значения. В ряде случаев подобный приём позволяет получить практически ценные качественные выводы.  [c.34]

Каждый механизм представляет собой кинематическую цепь. Основными свойствами механизма являются подвижность его звеньев и определенность (согласованность) их движения. Ввиду определенности движения звеньев механизма одного относительно другого параметры их движения (например, перемещение, скорость, ускорение) удобно оценивать относительно одного из них. Такое звено называют основой, станиной или стойкой. В большинстве случаев одно из звеньев механизма является неподвижным относительно поверхности нашей планеты — Земли. Неподвижное звено обычно и принимают за стойку. Но это иногда не удается осуществить. Так, например, при исследовании механизмов передач транспортных машин — автомобилей, тракторов, локомотивов, самолетов, ракет и др., стойкой считают раму, или корпус, совершающие движение относительно поверхности Земли. Примерами механизмов, различные звенья которых могут поочередно становиться неподвижными, являются механизмы шагания экскаваторов, у которых в пределах одного цикла поочередно становятся неподвижными корпус и опорные лыжи.  [c.20]

Законы движения тяя елых тел. Установив в предыдущих параграфах общие начала кинематики точки, мы в последующих параграфах настоящей главы приложим их к изучению различных частных случаев движения, которые систематически встречаются в различного рода конкретных вопросах. Мы начнем с изучения движений, происходящих с постоянным ускорением.  [c.117]

С помощью коррозионных исследований можно установить эффективность различных методов защиты металлов от коррозии. Коррозионные исследования бывают лабораторные, натурные и эксплуатационные. Лабораторные исследования проводят на образцах небольщих размеров. Обычно это металлические пластины размером 50X25 мм или цилиндры диаметром 10— 20 мм и высотой 40 мм. Условия проведения испытаний выбирают предварительно и результаты оценивают количественно, например гравиметрическим методом. В большинстве случаев исследования проводят ускоренно, т. е. при усиленном воздействии отдельных факторов температуры, концентрации и движения или перемешивания среды и т, д.  [c.36]

На рис. 7 показаны осциллограммы ускоренного движения слитковоза при его различном положении, полученные при условии, что усилие в заднем канате не менее 300 кГ. В этом случае переключатель П (рис. 6), который в момент пуска выключен, при достижении определенного усилия в заднем канате включался и на ведомый двигатель подавалось напряжение. Как видно из осциллограмм, время 4ап запаздывания пуска ведомого двигателя изменяется в зависимости от положения слитковоза, причем зависимость времени запаздывания от положения слитковоза практически линейная. Тем не менее отклонение времени 4ап от оптимального приводит к про-слаблению каната. Поэтому в случае использования грузового тормоза следует принимать для ведомого двигателя генераторный режим.  [c.114]


Как будет показано ниже, принятое допущение соответствует замене первого участка характеристики параболой. Сравнение приближенного аналитического решения и проведенного с высокой точностью численного решения уравнения движения показывает, что принятое допущение вносит погрешность не выше 0,5—1% при значительном упрощении решения. Этот, вообще говоря, частный прием может быть с успехом применен при исследовании переходного процесса резкого аварийного торможения рабочего оргона в различных машинах, приводимых от асинхронных двигателей. В некоторых случаях оказывается более удобным считать, что ускорение меняется по квадратичной зависимости [65].  [c.388]

В табл. 5 приведены некоторые варианты аппроксимирующих функций, полученных для различной величины Xq. Вычисления проводились для ряда значений Хо на ЭЦВМ Минск-22 . С увеличением Хоуменьшается максимальная величина инварианта ускорений, но увеличивается величина критерия R . В предельном случае при д о=0.5 полученный закон движения вырождается в известный полиномиальный закон синусоидального типа [25].  [c.59]

Теория оболочек и ее специальные случаи — теории плоских пластин и стержней — являются ответвлениями механики, ко-. торая в свою очередь является основным разделом физики. Механика может быть определена как область науки, которая имеет дело с соотношениями между силами, действующими на тела, и их движением. Общая концепция движения включает в себя перемещение, а, также и быстроту изменения перемещения во времени или скорость, быстроту изменения скорости во времени или ускорение и т. д. Относительные перемещения различных частей тела в общем случае вызывают деформации, которые связываются с перемещениями соответствующими геометрическими соотношениями.,  [c.15]

Характер движения самолета определяется направление.м и величиной его скорости в различные моменты времени. Если направление с течением времени не меняется, полет называется прямолинейным, в противном случае — криволинейным. Дв ижен-ие с неизменной скоростью называют равномерным. Если скорость с течением времени возрастает, полет называют ускоренным, если убывает—замедленным. Ускоренный полет иначе называют разгоном, а замедлеп-ный — то р м о ж ен и е м.  [c.115]

ДЛЯ рассеивания энергии необходимо относительное перемещение отдельных частей тела в этом случае прецессия вызывает периодически ускоренное движение всех частиц космического аппарата, за исключением центра масс. Устанавливая маятниковый механизм,систему с демпфирующей пружиной и массой-наконечником или диск, имеющие отличные от космического аппарата прецессионные характеристики (рис. 27), можно получить в результате две раз- личные динамические системы, перемещающиеся относительно друг друга на демпфирование относительного движения расходуется нежелательный избыток энергии. Наиболее распространенным демпфирующим устройством маятникого типа является расположенная по внешней стороне спутника изогнутая труба с движущимся внутри шаром собственная частота колебаний шара в трубе будет пропорциональна угловой скорости спутника, а вся система будет настроена на условия оптимального рассеивания энергии в широком диапазоне угловых скоростей спутника. Рассеивание энергии происходит за счет ударов, трения или гистерезиса. Иногда в подобном устройстве вместо шара используют ртуть—элемент с упругими и инерционными свойствами. Аналогичного эффекта можно добиться с помощью маятника, если подвеску его инерционной массы выполнить из упругого материала или поместить массу в вязкую среду [4, 9]. Маятник иногда располагают вдоль оси вращения на некотором расстоянии от центра масс с тем, чтобы усилить относительные перемещения, создаваемые прецессионными колебаниями (по сравнению с вариантом, когда тот же самый маятник располагается радиально от центра масс). Для демпфирования можно использовать также диск, помещенный в вязкую среду, поскольку отношения моментов инерции относительно соответствующих осей диска и космического аппарата различны. Аналогичную задачу мог бы выполнить элемент, установленный внутри спутника и вращающийся во много раз быстрее, чем сам спутник (такой элемент можно отнести к гироскопам). В принципе этот метод не отличается от предыдущих в том смысле, что он так-же основан на различии динамических характеристик указанного устройства и космического аппарата и на различии в частотах прецессии. Возникающее при этом относительное перемещение можно ограничить с помощью вязкой среды.  [c.224]


Смотреть страницы где упоминается термин Ускорение в различных случаях движения : [c.158]    [c.111]    [c.262]    [c.186]    [c.86]    [c.229]    [c.406]    [c.69]    [c.39]    [c.54]    [c.89]   
Смотреть главы в:

Теоретическая механика Издание 4  -> Ускорение в различных случаях движения



ПОИСК



Движение в случае G2 ВТ

Движение ускоренное



© 2025 Mash-xxl.info Реклама на сайте