Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пелена поперечных вихрей

Из теории профиля следует, что пелена поперечных вихрей является важным фактором при определении нестационарных нагрузок, связанных с колебательным движением лопасти. В отличие от рассмотренной плоской пелены вихревой след лопасти винта представляет собой идущую зй ней спиральную поверхность. Однако наиболее существенное влияние оказывает часть этой поверхности, расположенная вблизи задней кромки лопасти. Одним из возникающих в этой связи вопросов является следующий каким способом элемент вихревой поверхности, сошедший при повороте лопасти на угол 15—45°, следует учитывать в численных методах расчета индуктивных скоростей и нагрузок Для ответа на этот вопрос и рассматривалась в предыдущем разделе плоская вихревая пелена.  [c.443]


Влияние дискретности аппроксимации пелены поперечных вихрей исследовано в работе [Р.65]. Винтовую вихревую пелену лопасти можно представить решеткой из прямолинейных отрезков вихрей конечной интенсивности. В теории профиля  [c.446]

Здесь — текущий азимут, рассматриваемый как безразмерное время, а ф — безразмерное время существования данного элемента свободного вихря. Аналогично интенсивность элемента пелены поперечных вихрей равна разности циркуляций присоединенного вихря на двух соседних азимутах, отличающихся на Агр  [c.656]

При построении участка пелены поперечных вихрей, непосредственно примыкающего к задней кромке лопасти, для правильного учета нестационарных аэродинамических эффектов должны  [c.656]

Пелена поперечных вихрей 799, 809 Перекрытие 127 Плоскости отсчета 168 Плоскость взмаха 155  [c.1015]

Рассмотрим профиль с хордой 26, который находится в равномерном потоке, имеющем скорость U. Поскольку циркуляция присоединенных вихрей изменяется во времени, профиль и его след описываются слоем плоских вихрей, показанных на рис. 10.1. За профилем вниз по потоку тянется пелена, состоящая из поперечных вихрей. Погонную интенсивность слоя вихрей на профиле обозначим уь, а в следе — Движение профиля зададим, указав вертикальное перемещение h (положительное вниз) точки профиля с координатой х = аЬ w геометрический угол атаки а (положительный при движении носка профиля вверх, см. рис. 10.2). Аэродинамический момент профиля также будем определять относительно точки с координатой X = аЬ. Вследствие движения профиля возникает относительная скорость протекания Wa (положительная вверх), равная  [c.432]

Итак, расчет нагрузок на лопасти несущего винта по теории несущей линии связан с определением -индуктивных скоростей в сечениях от продольных и поперечных вихрей следа. Для определения скорости притекания потока к сечению лопасть заменяется присоединенным вихрем, расположенным вдоль линии четвертей хорд, а продольные свободные вихри, образующиеся вследствие изменения подъемной силы по размаху, продлеваются до присоединенного вихря. Индуктивная скорость подсчитывается в месте расположения присоединенного вихря. Простейшим и экономным в вычислительном отношении представлением сложной системы свободных вихрей лопасти является сетка из вихревых элементов конечной длины. Свернувшиеся концевые вихревые жгуты лопастей хорошо описываются сосредоточенным вихрем. На основе проведенного выше исследования обтекания профиля можно заключить, что модель несущей линии применима и при наличии в следе поперечных вихрей. При адекватном представлении расположенного близ лопасти участка пелены вихрей нестационарные аэродинамические эффекты могут быть рассчитаны достаточно верно, несмотря на то, что индуктивная скорость определяется лишь в одной точке по хорде (на присоединенном вихре). Для повышения точности результатов расчета пелену поперечных вихрей следует обрывать, не доходя до присоединенного вихря, на четверть хорды. Непрерывное распределение вихрей еле-  [c.448]


Уменьшение силы тяги вызвано влиянием пелены вихрей, но на висении это влияние заметнее проявляется в моментных характеристиках вследствие возникновения поперечных вихрей. Типичные значения рассмотренных выше функций уменьшения подъемной силы равны С 0,8 для полета вперед, С с 0,7 для изменений силы тяги на режиме висения, С с 0,5 для изменений моментов на режиме висения.  [c.479]

Рис, 13.1. Продольные и поперечные вихри пелены лопасти.  [c.650]

Были опробованы различные модели вихревого следа. Интенсивные концевые вихри хорошо описываются с помощью прямолинейных вихревых отрезков, имеющих вязкое ядро конечных размеров (см. разд. 10,8), причем криволинейная форма вихревых нитей хорошо описывается ломаной из прямолинейных отрезков, соответствующих изменению азимута на 15—30°, Модель следа, в которой пелена вихрей, сходящих с внешней части лопасти, сворачивается в концевой вихрь, используется почти всеми авторами некоторые различия возникают при описании ядра вихря с целью устранения особенности индуктивной скорости в центре вихря. Моделирование же пелены продольных и поперечных вихрей, сходящей с внутренних сечений лопасти, отличается разнообразием. Эта часть пелены влияет гораздо слабее, чем концевые вихри, что открывает большие возможности выбора удовлетворительной по точности модели. Чаще всего применяется модель пелены в виде сетки дискретных вихрей, т. е. прямолинейные отрезки вихря используются, для моделирования не только концевых вихрей, но и пелены вихрей, сходящих с внутренних сечений лопасти (рис. 13.4). Такая модель пелены соответствует ступенчатому изменению циркуляции присоединенных вихрей лопасти как по радиусу, так и по ази-  [c.655]

В работе [М.. 124] уточнено влияние близких к лопасти поперечных вихрей на поле индуктивных скоростей. Скорости от этих вихрей вычислялись только в одной точке по хорде, расположенной на присоединенном вихре (см. разд. 10.3). При этом для правильного отображения нестационарных аэродинамических эффектов пелена ближних вихрей продлевается до точки, отстоящей от присоединенного вихря на четверть хорды. Таким образом, при определении индуктивных скоростей от продольных вихрей интегрирование по ф ведется непосредственно от положения присоединенного вихря, а при определении скоростей от поперечных вихрей интегрирование начинается от значения Ф, меньшего, чем у присоединенного вихря, на величину с/4г. Интегрирование по г выполняется аналитически.  [c.665]

В работе [D.16] развит метод расчета переменного поля индуктивных скоростей одиночного винта и двух винтов вертолета продольной схемы. Модель пелены представлена в виде большого количества продольных вихрей конечной интенсивности, каждый из которых образован ломаной из прямолинейных отрезков. Поперечные вихри игнорируются. Пелена вихрей считается не-деформируемой. Расчеты этим методом [D.17] обнаружили существенное влияние неоднородности поля индуктивных скоростей на аэродинамические характеристики винта, связанное со значительным изменением углов атаки сечений лопасти.  [c.668]

При приближении вращающейся лопасти несущего винта к вихревому следу предыдущей лопасти аэродинамические нагрузки на ней сильно меняются в зависимости от относительного положения следа и лопасти. Поэтому для определения переменных индуктивных скоростей и аэродинамических нагрузок в первую очередь нужно установить форму системы вихрей. При вращении лопасти с нее сходят как продольные, так и поперечные вихри. Далее элементы этих вихрей переносятся с местной скоростью воздушного потока, складывающейся из скорости невозмущенного потока и скорости, которую индуцирует на соответствующем элементе система вихрей винта. В предположении постоянства индуктивной скорости сходящая с вращающейся лопасти пелена вихрей имеет вид скошенной винтовой поверхности. На самом деле индуктивные скорости в разных точках пелены вихрей (как и на диске винта) существенно различны. Поэтому действительная форма пелены вихрей, определяемая путем интегрирования перемещений ее точек в неоднородном поле местных скоростей, существенно отличается от упомянутой идеальной пелены. На большом расстоянии вниз по потоку система вихрей винта стремится свернуться в два вихревых жгута, подобных концевым вихрям кругового крыла. Однако для определения нагрузок существенны деформации пелены только вблизи диска винта, и в особенности положение элементов концевых вихрей нри первом приближении их к последующей лопасти. Явление взаимодействия свободного вихря с лопастью не исчерпывается возникновением на лопасти соответствующих аэродинамических нагрузок. Лопасть в свою очередь влияет на вихрь, вызывая значительное изменение скорости  [c.671]


В работе [L.9] разработан метод расчета деформаций вихревого следа. Модель следа учитывала до 10 продольных вихрей. Поперечные вихри не учитывались. Исследовалась лишь форма концевых вихрей. Шаг по азимуту составлял от Ai) = 15° до All = 30°. Расчет производился в течение 5 оборотов винта. Оказалось, что форма вихрей слабо зависит от радиуса ядра. Для уменьшения времени счета элементы вихрей разделялись на ближние и дальние. К первым относились все элементы, относительно которых в первой итерации было установлено, что они существенно влияют на индуктивную скорость в заданной точке пелены. Для ускорения счета в последующих приближениях при вычислении индуктивных скоростей учитывались только ближние вихри. В результате время, требуемое для определения формы свободных вихрей, уменьшилось на порядок.  [c.679]

Экспериментальные и теоретические исследования последних лет раскрывают общую картину развития динамического срыва, хотя еще нельзя сказать, что протекание срыва в нестационарных условиях полностью изучено. Рассмотрим профиль, угол атаки которого периодически изменяется с большой амплитудой от значения, намного меньшего критического угла атаки в стационарных условиях, до значения, превосходящего угол атаки начала динамического срыва. Такой диапазон типичен для первой гармоники изменения угла атаки при полете вперед, причем среднее его значение соответствует большому значению параметра нагружения Ст/а, При увеличении угла атаки срыв затягивается вследствие нестационарности, так что линейный закон изменения подъемной силы и небольшие моменты на профиле сохраняются при значениях угла атаки, превышающих критический угол атаки в стационарных условиях. После того как угол атаки профиля превысит угол атаки начала динамического срыва (который в свою очередь зависит от скорости а изменения угла атаки), подсасывающая сила на передней кромке профиля пропадает, а с поверхности вблизи передней кромки начинает отходить пелена интенсивных поперечных вихрей. Эти вихри движутся над верхней поверхностью профиля по направлению к задней кромке со скоростью, значительно меньшей, чем скорость набегающего потока. Вызванное вихрями возмущение поля давления приводит к смещению назад области разрежения. В возникшем переходном процессе  [c.799]

Расчеты обтекания треугольного крыла (ромбовидного поперечного сечения) [4] были выполнены при допущении о справедливости закона плоских сечений для крыльев предельного малого удлинения и при замене вихревой пелены дискретными вихрями. Как показало сравнение с экспериментом, результаты расчетов с качественной стороны правильно отражают влияние толщины крыла на характеристики обтекания. В этом случае вихревая пелена сходила с кромки крыла по касательной к нижней поверхности крыла (при положительных углах атаки).  [c.241]

В заключение отметим, что при изучении обтекания цилиндрических тел нельзя значения сил, полученных для плоской задачи, распространять на все тело путем простого их умножения на размер цилиндра вдоль образующей. Дело в том, что при обтекании цилиндров конечной длины возникают так называемые концевые эффекты , которые заключаются в образовании вблизи концов цилиндра вторичных течений, создающих за цилиндром особую систему вихрей, которая может заметно влиять на силы, действующие на тело. Такая система вихрей (вихревая пелена) изменяет направление поперечной силы Жуковского, что приводит к появлению индуктивного сопротивления. Эти вопросы изучаются в теории крыла.  [c.398]

Таким образом, след лопасти оптимального несущего винта представляет собой геликоидальную пелену с постоянным углом наклона, не возмущенную индуктивными скоростями и и V. При такой (винтообразной) форме пелены любой поперечный свободный вихрь, который сходит с задней кромки лопасти и становится элементом следа, все время будет оставаться на той же радиальной горизонтальной прямой. Эта структура следа соответствует несущему винту с минимальной индуктивной мощностью при заданной силе тяги.  [c.92]

На вутренней части лопасти циркуляция присоединенных вихрей в направлении комля плавно уменьшается до нуля. При этом с лопасти сходит пелена продольных свободных вихрей, направление вращения которых обратно концевому вихрю. Поскольку градиент изменения циркуляции присоединенных вихрей по радиусу невелик, сходящий с комля лопасти вихревой жгут обычно существенно слабее концевого жгута и более диф-фундирован. Если циркуляция присоединенного вихря изменяется по азимуту (при периодическом изменении нагрузок лопасти на режиме полета вперед или при переходном движении), с внутренней части лопаг-ти сходит и пелена поперечных вихрей. Элементы продольных и поперечных вихрей переносятся с местной скоростью потока воздуха, причем интенсивность в процессе такого переноса сохраняется постоянной. Скорость переноса вихрей слагается из скорости невозмущенного потока и скорости, индуцируемой самими вихрями пелены. При этом можно считать, что пелена вихрей переносится вниз (по нормали к плоскости диска винта) со скоростью, равной сумме средней индуктивной скорости и нормальной к диску винта составляющей скорости невозмущенного потока ). На режиме полета вперед эта составляющая скорости образуется при наклоне диска винта, а на осевых режимах она равна скорости полета. Принимается, что перенос элементов пелены назад (параллельно плоскости диска винта) происходит лишь со скоростью невозмущенного потока. Индуцируемые вихрями скорости существенно деформируют вихри при их движении. При этом на режиме полета вперед с каждой лопасти сходят скошенные назад спиралевидные деформирующиеся и перекручивающиеся вихри. Их форма на режимах висения и полета вперед рассмотрена в разд. 2.7.1 и 4.2.  [c.651]


Такая модель нестационарного обтекания сечений винта на режиме висения, учитывающая повторное влияние пелены вихрей, развита в работе [L.113]. Плоская система вихрей, аппроксимирующая соответствующие винтовые поверхности, показана на рис. 10.10. Сначала рассмотрим однолопастный винт, считая, что вся завихренность сходит с единственной его лопасти. Сечение лопасти представлено тонким профилем, с задней кромки которого сходит (и простирается до бесконечности) след, состоящий из поперечных вихрей. Остальные винтовые вихревые поверхности, проходящие под лопастью, моделируются серией плоских параллельных вихревых слоев с расстоянием А между ними, причем каждый слой тянется до бесконечности вверх и  [c.455]

Представляет собой введенную Лоуи функцию уменьшения подъемной силы. Таким образом, в рамках рассмотренной плоской модели учет повторного влияния пелены поперечных свободных вихрей сводится к замене функции Теодорсена в формулах для нестационарных аэродинамических нагрузок профиля функцией Лоуи. Модификация функции уменьшения подъемной силы связана с появлением множителя W, который для однолопастного винта определяется формулой  [c.459]

В ЭТИХ выражениях величины ат и — нормальная и радиальная составляющие скорости потока, набегающего на сечение лопасти, Z W — скорость протекания в рассматриваемом сечении (направлена вверх). Например, если опустить члены порядка с, то ш = utQ — Up] величина В представляет собой градиент изменения этой скорости по хорде, которая может быть связана с изменениями угла установки. Верхние знаки соответствуют прямому обтеканию профиля, нижние — обратному. Влияние радиального течения учтено нагрузками, определяемыми по теории обтекания тонкого тела (соответствующие члены содержат производную по радиусу w ), а также включением дополнительных членов в выражение для w. Влияние изменений во времени скорости потока, набегающего на сечение лопасти, на нагрузки учитывается членами с производной w. Наконец, влияние продольных и поперечных вихрей пелены учитывается путем включения в W индуцируемой этими вихрями скорости. Нри этом индуктивная скорость вычисляется в одной точке по хорде на основе аппроксимации блил<них к лопасти поперечных вихрей, рассмотренной в разд. 10.3.  [c.488]

Если крыло конечного размаха или нестационарно движущееся крыло бесконечного размаха создает подъемную силу, то за крылом возникает след, состоящий из продольных и поперечных свободных вихрей (вихревая пелена). Вихри следа в свою очередь вызывают на поверхности лопасти дополнительные индуктивные скорости, оказывающие существенное влияние на аэродинамические нагрузки. Поэтому расчет скоростей, индуцируемых пеленой вихрей, представляет собой важную часть определения аэродинамических нагрузок. Чтобы рассчитать последние с удовлетворительной точностью при приемлемых затратах на проведение вычислений, целесообразно аппроксимировать непрерывную пелену свободных вихрей решеткой из дискретных вихревых элементов. Индуцируемая таким элементом скорость может быть описана аналитическим выражением, а полная индуктивная скорость определяется путем суммирования скоростей от каждого из элементов. Наиболее важен учет концевых вихревых жгутов. Эти жгуты хорошо описываются последовательностью прямолинейных вихревых отрезков, образующих ломаную линию. Свободные продольные и поперечные вихри, сходящие с внутренних участков лопасти, существенно меньше, влияют на результаты расчета индуктивной скорости. Поэтому для них могут использоваться более грубые модели — от полностью игнорирующих влияние этих вихрей до использующих сетки дискретных вихревых элементов или вихревые по-вёрхности.  [c.488]

Высшие гармоники нагружения лопастей несущего винта при полете вперед рассматривались в работе Миллера [М.125] (1964 г.), где было установлено, что неоднородность поля скоростей протекания потока через диск винта связана главным образом с наличием и формой концевых вихревых жгутов лопастей, интенсивность которых определяется средним значением подъемной силы винта ). Таким образом, доминирующую роль в образовании высоких гармоник нагрузки при полете вперед играют не поперечные, а продольные вихри. Следующим по важности фактором является изменение скоростей протекания вследствие влияния ближней к лопасти части ее следа. Миллер установил, что при очень малых значениях характеристики режима ц рассмотренные выше эффекты повторного влияния пелены весьма существенны. Однако при ц 0,2 сохраняется влияние лишь близкой к лопасти части следа, учитываемое функцией Теодорсена.  [c.466]

Таким образом, расчет неоднородного поля KOpo xefi протекания основывается на определении скоростей, индуцируемых дискретным элементом вихревой пелены. Ниже дается вывод формул для скоростей, индуцируемых вихревой линией или поверхностью. Прежде всего будет рассмотрена прямолинейная вихревая нить, что позволит изучить ряд общих черт поля индуцируемых вихрями скоростей. Вихревая нитв конечной интенсивности представляет собой предельный случай, когда поле вихрей конечной суммарной интенсивности сконцентрировано в трубке бесконечно малого поперечного сечения. Вблизи вихревой нити поле скоростей имеет особенность, причем скорости стремятся к бвсконечности обратно пропорционально расстоянию до нити. В реальной жидкости вследствие влияния вязкости эта особенность отсутствует, ибо диффузия вихрей превращает нить в трубку малого, но конечного поперечного сечения, называемую ядром вихря. Скорость принимает максимальные значения на некотором расстоянии от оси вихревой трубки, которое можно принять в качестве радиуса ее ядра. Поскольку лопасти несущего винта часто проходят очень близко к концевым вихрям от впереди идущих лопастей, ядро вихря играет важную роль в создании индуктивных скоростей на лопастях несущего винта, и существование такого ядра следует учитывать при описании распределения вызываемой винтом завихренности. Радиус ядра концевого вихря составляет примерно 10% длины хорды лопасти. Экспериментальных данных о размерах ядра концевого вихря очень мало, особенно для случая вращающейся лопасти.  [c.489]

Вихревая пелена. В п. 13.20 мы определили прямолинейный вихрь как предельный случай цилиндрической вихревой трубкн, когда поперечное сечение ее стягивается в точку, а поток вихря остается постоянным. Теперь мы используем аналогичный прием, чтобы определить вихревую пелену.  [c.353]


Смотреть страницы где упоминается термин Пелена поперечных вихрей : [c.449]    [c.455]    [c.460]    [c.467]    [c.656]    [c.657]    [c.664]    [c.664]    [c.667]    [c.667]    [c.669]    [c.186]    [c.196]    [c.431]    [c.447]    [c.681]   
Теория вертолета (1983) -- [ c.799 , c.809 ]



ПОИСК



Вихрь

Пелиты



© 2025 Mash-xxl.info Реклама на сайте