Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория нестационарного обтекания профиле

Поскольку условия обтекания лопасти несущего винта при полете вперед и при неустановившихся движениях меняются во времени, в теории несущей линии приходится использовать нестационарные аэродинамические характеристики профиля. Сначала рассмотрим задачу обтекания профиля равномерным невозмущенным потоком. Будем следовать обычным допущениям линейной теории тонкого профиля в несжимаемой среде, когда профиль и его след заменяются слоем точечных вихрей, расположенным вдоль прямой, параллельной скорости невозмущенного потока. Нагрузки, обусловленные толщиной и формой профиля в линейной теории, могут быть определены независимо  [c.432]


При расчете нагрузок индуктивные скорости в месте расположения лопасти обычно определяются по теории несущей линии, т. е. в одной точке по хорде профиля. При этом из-за сложности формы вихревой пелены для определения индуктивных скоростей требуется весьма большой объем вычислений. При использовании же нестационарной теории обтекания профиля требуется знать распределение индуктивных скоростей по хорде. Так, для получения нестационарных подъемной силы и момента (разд. 10.2) нужно знать коэффициенты Хо, и в разложении индуктивной скорости в ряд по косинусам. При этом для уменьшения объема вычислений желательно обойтись без расчета индуктивной скорости в нескольких точках по хорде. Ниже строится такая модель ближнего вихревого следа, в рамках которой для приемлемого расчета нестационарных нагрузок достаточно вычислить индуктивную скорость по теории несущей линии лишь в одной точке по хорде.  [c.443]

Итак, расчет нагрузок на лопасти несущего винта по теории несущей линии связан с определением -индуктивных скоростей в сечениях от продольных и поперечных вихрей следа. Для определения скорости притекания потока к сечению лопасть заменяется присоединенным вихрем, расположенным вдоль линии четвертей хорд, а продольные свободные вихри, образующиеся вследствие изменения подъемной силы по размаху, продлеваются до присоединенного вихря. Индуктивная скорость подсчитывается в месте расположения присоединенного вихря. Простейшим и экономным в вычислительном отношении представлением сложной системы свободных вихрей лопасти является сетка из вихревых элементов конечной длины. Свернувшиеся концевые вихревые жгуты лопастей хорошо описываются сосредоточенным вихрем. На основе проведенного выше исследования обтекания профиля можно заключить, что модель несущей линии применима и при наличии в следе поперечных вихрей. При адекватном представлении расположенного близ лопасти участка пелены вихрей нестационарные аэродинамические эффекты могут быть рассчитаны достаточно верно, несмотря на то, что индуктивная скорость определяется лишь в одной точке по хорде (на присоединенном вихре). Для повышения точности результатов расчета пелену поперечных вихрей следует обрывать, не доходя до присоединенного вихря, на четверть хорды. Непрерывное распределение вихрей еле-  [c.448]

Основная идея метода была изложена Г. Г. Черным (1956) применительно к гиперзвуковому стационарному обтеканию профилей и тел вращения и к одномерным нестационарным течениям газа, которые в силу закона плоских сечений также могут служить для приближенного описания гиперзвукового обтекания тел. Теория сильно уплотненного пограничного слоя, называемая также рядом авторов теорией ударного слоя, за десятилетие, прошедшее со времени опубликования посвященных ей первых работ, интенсивно развивалась и явилась основным средством аналитического исследования и источником получения результатов о гиперзвуковых течениях невязкого газа около тел.  [c.194]


Согласно теории тонкого профиля, в идеальной жидкости производная коэффициента подъемной силы сечения по углу атаки равна 2я, а фокус расположен на расстоянии четверти хорды от носка. Поэтому необходимо ввести в формулы нестационарной теории профиля поправки, учитывающие реальные значения производной коэффициента подъемной силы и действительное положение фокуса. Первая поправка состоит в умножении выражений для подъемной силы и момента на отношение а/2п, где а — производная коэффициента подъемной силы реального профиля по углу атаки. Для профилей лопастей обычно принимают а = 5,7, если не учитывается влияние сжимаемости. Временно обозначив введенную ранее относительную координату продольной оси лопасти через а (а не а, как ранее), напомним, что по теории тонкого профиля при прямом обтекании фокус располагается на расстоянии — Ь за про-<  [c.487]

Полученные таким образом величины подъемной силы хорошо согласуются с результатами измерений на колеблющихся профилях. Описанный метод позволяет повысить точность расчета характеристик винта. Без учета срыва теория сильно завышает подъемную силу винта при сильном его нагружении, а при расчете срыва по стационарным характеристикам подъемная сила сильно занижается. Учет нестационарности и пространственного характера обтекания дает хорошую сходимость результатов расчетов с экспериментальными данными, причем эффекты скольжения дают 40% поправки, а остальные 60% определяются учетом динамического срыва. В работе [Т.30] описывается дальнейшее развитие указанного метода расчета срыва на отступающей лопасти с учетом крутильных колебаний лопасти. Для расчета коэффициента момента также используется эффективный угол атаки, подобный адин, но выбрано другое значение параметра i. Установлено, что расчетные нагрузки в цепи управления по тангажу, как и остальные нагрузки, хорошо сходятся с полученными при летных испытаниях. Совпадают амплитуды нагрузок и качественно сходятся законы их изменения. Улучшилась также сходимость расчетных и экспериментальных характеристик винта в условиях сильного нагружения. Хотя учет влияния угла скольжения существенно сказывается на аэродинамических характеристиках винта, нагрузки в цепи управления в условиях срыва от угла скольжения не зависят. В рассмотренном случае возникновение динамического срыва на конце лопасти вело к одновременному срыву на внешней части лопасти протяженностью около 40% радиуса. В результате срыва возникали очень большие нагрузки на управление, которые к тому же усиливались последующими крутильными деформациями лопасти. Дальнейшее развитие описанного метода определения аэродинамических сил на лопасти дано в работе [G.97].  [c.815]

Задача о плоском нестационарном движении жидкости, вызываемом неравномерно движущимся профилем, представляет частный случай изложенной общей теории, если циркуляция вокруг профиля принимается постоянной. Классическое исследование этого случая движения профиля и установление формул силы и момента принадлежит С. А. Чаплыгину и относится к 1926 г. ), а дальнейшее развитие этого вопроса — Л. И. Седову ), Основная трудность в изучении нестационарных движений крылового профиля заключается в переменности во времени циркуляции и возникновении в связи с этим в потоке сходящей с профиля вихревой пелены, оказывающей индуктивное влияние на его обтекание.  [c.322]

На основании приведенного обзора развитие гидродинамической теории решеток можно разбить на четыре основных этапа (I) постановка и решение первых задач для решетки пластин (И) разработка общей теории решеток из тонких профилей (III) полное решение прямой и обратных задач в плоском потоке с последующим учетом сжимаемости и вязкости жидкости и их использование в практике расчета и профилирования решеток турбомашин (IV) обращение к современным проблемам нестационарного и пространственного обтекания решеток.  [c.152]


Седов Леонид Иванович (1907-1999) — видный советский ученый в области механики и прикладной математики. Окончил Московский университет (1931 г.). С 1937 г. — профессор Московского университета, работал (с 1945 г.) в Математическом институте АН СССР. Основные работы по гидроаэромеханике, механике сплошной среды, теории подобия, аэроупругости. Обобщил теорему Жуковского для произвольного движения крыла построил теорию тонкого крыла, исследовал потенциальное обтекание газом профилей и решеток, развил нестационарную теорию решеток. В теории подобия решил ряд важных задач, в частности задачу о сильном взрыве, построил теорию автомодельных движений газа. Установил закон пульсаций в изотропной турбулентности. Разработал модели сплошной среды с учетом электродинамических явлений н метод решения задач на основе сформулированного им вариационного принципа. Автор ряда фундаментальных монографий по вопросам механики сплошной среды.  [c.479]

Впервые теорию нестационарного обтекания профилей дали Карман и Сирс [8.130]. Это было усовершенствование теорий, первоначально разработанных Бирнбаумом [8.131] и другими авторами. В СССР аналогичные работы выполнены Некрасовым [8.132].  [c.250]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]

Задача о произвольной нестационарной деформации профилей или их движения при постоянной циркуляции в потенциальном потоке сводится к вычислению квадратурами типа (3.13) дополнительной касательной к контуру слагающей Vg скорости по ее заданной нормальной слагающей Vfi иди же к решению соответствующей неоднородной задачи относительно функции тока или потенциала течения вытеснения . Первая задача такого рода — о плоском движении жидкости в треугольной полости вращающегося тела — была решена Н. Е. Жуковским в 1885 г. (эта задача имеет отношение к течению во вращающейся радиальной решетке с прямыми лопатками). Вращение одиночного тонкого профиля и двух профилей тандем было изучено Л. И. Седовым в 1935 г. затем им же был дан общий подход к решению подобных задач в рамках теории тонкого профиля. Общие свойства потока через вращающуюся круговую решетку и, в частности, ее конформное отображение на прямую рассмотрел П. А. Вальтер в 1926 г. Основные задачи обтекания таких решеток решены Г. И. Майка-паром (1949, 1953, 1958, 1966), Л. А. Дорфманом (1956), Т. С. Соломаховой  [c.125]

Эквивалентность гиперзвукового обтекания тонких заостренных тел и нестационарных движений газа на плоскости дала возможность использовать для аэродинамических приложений методы и результаты теории одномерных нестационарных движений газа, в частности, многие результаты теории одномерных автомодельных течений газа естест-вeннo чтo для аэродинамических приложений могут быть использованы лишь результаты для течений с плоскими и с цилиндрическими волнами, соответствующие обтеканию профилей и симметричному обтеканию тел вращения). Простейшие примеры такого использования решений — для плоского и цилиндрического поршней, расширяющихся с постоянной скоростью,— имеются уже в работах  [c.186]


Метод интегральных соотношений в изложенной форме может быть применен и к расчету гиперзвуковых течений около тонких тел с малым затуплением переднего конца. Как уже говорилось, при обтекании таких тел вблизи поверхности тела образуется слой с высокой энтропией и малой плотностью газа. В этом слое нарушается закон плоских сечений и тем самым нарушается предположение, приводящее к эквивалентности задачи обтекания и задачи нестационарного движения газа на плоскости. Однако при использовании описанного метода интегральных соотношений теми ч ленами в них, которые связаны с наличием продольного движения газа в пространстве, можно пренебречь, так как они малы вследствие мадой массы газа, протекающего в высокоэнтропийном слое. Внутреннюю же энергию газа, текущего в этом слое, нужно учитывать, так как толщина слоя не мала. В этих предположениях Г. Г. Черный (1957) дал первые теоретические решения задач о неавтомодельном обтекании тел, рассмотрев обтекание тонкого клина и тонкого конуса с малым затуплением переднего конца. При решении этих задач, как уже говорилось ранее, были установлены законы подобия гиперзвукового обтекания затупленных клиньев и конусов. Было также установлено важное качественное отличие обтекания затупленных профилей и затупленных тел вращения. При обтекании профиля крыла малое затупление его кромки повышает давление на значительной части профиля, так что его сопротивление больше суммы сопротивления заостренного профиля и затупления. При обтекании тела вращения малое затупление переднего конца понижает давление на большом участке поверхности тела, так что его сопротивление меньше суммы сопротивления заостренного профиля и затупления. Более того согласно при- ближенной теории сопротивление очень тонкого затупленного конуса может быть даже несколько меньше сопротивления одного только острого  [c.199]

С. А. Чаплыгину принадлежат первые исследования разрезного крыла, крыла с преду<рылком и закрылком. В 1914 г. С. А. Чаплыгин предложил новую теорию расчета обтекания решеток профилей. Теоретические исследования С. А. Чаплыгина послужили классическим образцом применения метода комплексного переменного в теории крыла в плоскопараллельном потоке. В 1926 г. С. А. Чаплыгин обобщил свои формулы силы и момента на случай нестационарного движения крыла при постоянной во времени циркуляции, чем положил основу нового направления теории нестационарного движения.  [c.32]

Широкое применение цифровых электронных вычислительных машин сделало целесообразным применение к задачам обтекания метода интегральных уравнений. В последние годы получают развитие численные методы построения течеций идеальной несжимаемой жидкости с помош,ью распределенных особенностей (вихрей, источников-стоков, диполей). Одним из преимущ еств этих методов по сравнению с методами комплексного переменного является возможность их применения для построения не только плоских, но и пространственных течений. Эти методы опираются на хорошо разработанную в математике обш,ую теорию потенциала. В 1932 г. П. А. Вальтер и М. А. Лаврентьев, пользуясь указанной обш,ей теорией, получили интегральное уравнение относительно интенсивности распределения вихрей вдоль криволинейного контура и предложили метод последовательных приближений для его решения. В статье М. А. Лаврентьева, Я. И. Секерж-Зеньковича и В. М. Шепелева (1935) указанный способ применяется к построению обтекания бипланной системы, состояш,ей из двух бесконечно тонких искривленных дужек. Задача сводится к решению системы двух интегральных уравнений методом последовательных приближений и доказывается сходимость такого процесса. В последние годы развивались численные методы расчета произвольных систем тонких профилей. С. М. Белоцерковский (1965) использовал схему замены вихревого слоя (как стационарного, так и нестационарного) конечным числом дискретных вихрей, сведя задачу к решению системы алгебраических уравнений. В работах А. И. Смирнова (1951) и Г. А. Павловца (1966) используется схема непрерывного распределения вихрей и с помощью интерполяционных полиномов Мультхопа расчет также сводится к решению системы алгебраических уравнений.  [c.88]

В основном первом случае решетка тонких профилей, близких к решетке пластин с периодом я , движется поступательно в плоскости z, причем вдали перед решеткой (z = оо) жидкость покоится (рис. 6). (Такая задача несущественно отличается от задачи обтекания неподвижной решетки, рис. 1, однако имеет некоторые преимущества при распространении метода на случай нестационарного движения.) Величины комплексной скорости V z) dwidz в линейной постановке теории тонкого крыла сносятся на разрезы (— а [c.111]


Смотреть страницы где упоминается термин Теория нестационарного обтекания профиле : [c.664]    [c.667]    [c.425]    [c.814]    [c.136]    [c.99]   
Аэродинамика решеток турбомашин (1987) -- [ c.250 ]



ПОИСК



Нестационарное обтекание тел

Нестационарность

Обтекание

Теория нестационарная



© 2025 Mash-xxl.info Реклама на сайте