Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цепи Жесткость

Однако суммарная нагрузка (Р ) не определяет общей нагрузки на ведущую ветвь цепи, истинная величина полной нагрузки зависит еще от жесткости самой цепи, жесткости системы опор, а также от точности расчета параметров передачи и монтажа. При больших величинах предварительного натяжения Рд (например, за счет перетяжки холостой ветви) полная нагрузка в десятки раз превышает суммарную [1 4].  [c.573]

Силы, возникающие в ветвях цепи от действия технологических факторов. Эксцентрицитет звездочек и разноразмерность (технологические неточности) звеньев и зубьев звездочек изменяют длины пролетов ветвей работающей передачи. Это влечет за собой появление дополнительных сил, зависящих в первую очередь от жесткости ветвей цепи. Жесткость ведущей ветви значительно выше жесткости ведомой, поэтому практический интерес представляет определение дополнительных сип в ведущей ветви.  [c.314]


При малой жесткости кинематической цепи упругие колебания могут оказаться настолько большими, что маховое колесо не будет выполнять своего назначения.  [c.390]

Силы сопротивления делят на полезные сопротивления, для преодоления которых предназначен данный механизм и которые обусловлены технологическим процессом, и вредные сопротивления (силы трения в кинематических парах, сопротивление жесткости канатов и цепей, гидродинамическое и аэродинамическое сопротивления).  [c.56]

Однако в целом ряде случаев приходится сознательно проектировать и изготавливать статически неопределимые механизмы с избыточными связями для обеспечения нужной прочности и жесткости системы, особенно при передаче больших сил. Следует различать избыточные, или добавочные, связи в кинематических парах и в кинематических цепях механизма. Так, например, (рис. 2.13) коленчатый вал четырехцилиндрового двигателя образует с подшипником А одноподвижную вращательную пару, что вполне достаточно с точки зрения кинематики данного механизма с одной степенью свободы (VT= 1). Однако, учитывая большую длину вала и значительные силы, нагружающие коленчатый вал, приходится добавлять еще два подшипника А и А", иначе система будет неработоспособной из-за недостаточной прочности и жесткости. Если эти вращательные пары двухподвижные цилиндрические, то  [c.34]

В разветвленных кинематических цепях звено входит в несколько кинематических пар и образует параллельные структурные цепи. В этих случаях перемещение входного звена, вызванное податливостью всей кинематической цепи, определяется в основном деформациями наиболее жестких соединений. Жесткость механизма при параллельном соединении упругих звеньев равна сумме жесткостей его звеньев Сз,- и кинематических пар Спс-  [c.295]

Приводные валы, кроме кручения, испытывают также изгиб, вызываемый действием усилий между зубьями или натяжением ремней, цепей, а также весом самих валов и посаженных на них деталей. При упрощенном расчете валов учитывается только кручение, но при этом допускаемые напряжения заведомо занижаются, например для валов из углеродистой стали [т]=12-э 15 МПа, Если вал длинный, то его рассчитывают на прочность и жесткость и выбирают большее значение.  [c.125]

Конденсаторный микрофон состоит из последовательно соединенных катушки самоиндукции L, резистора сопротивления R и конденсатора, пластины которого связаны двумя пружинами общей жесткости с. Цепь присоединена к источнику питания с постоянной э.д. с. Е, а на пластину конденсатора действует переменная сила РЦ). Емкость конденсатора в положении  [c.369]


Материалы на основе полиамидов. Широкое применение в различных узлах трения находят антифрикционные композиционные материалы на основе полиамидов. Полиамиды благодаря наличию в основной полимерной цепи амидных фупп - NH- O- и, как следствие этого, сильных межмолекулярных связей отличаются от большинства промышленных полимеров высокими механическими свойствами, жесткостью, твердостью и стойкостью к ударным нагрузкам, повышенной усталостной прочностью и радиационной стойкостью.  [c.30]

Приведение жесткостей упругих звеньев механизма. Приведенным коэффициентом жесткости кинематической цепи называется коэффициент жесткости звена приведения, имеющего ту же потенциальную энергию, что и заменяемая кинематическая цепь. Обратная величина называется приведенным коэффициентом податливости.  [c.111]

Пример 1. Электромагнитный прибор состоит из подвижной катушки, вращающейся в постоянном магнитном поле, которое создает другая, неподвижная катушка, образующая с подвижной катушкой последовательную электрическую цепь. На подвижную катушку действует пара сил, создаваемая упругостью пружины с коэффициентом жесткости с. Во вращательной паре —вязкое трение с коэффициентом р. За обобщенные координаты системы примем угол поворота подвижной катушки Ф и ток i, протекающий через обмотки катушек. Тогда механическая функция Лагранжа примет вид  [c.281]

При движении цепной передачи затрачивается энергия на преодоление сил трения элементов шарнирных сочленений, сопротивления жесткости цепи и на барботаж масла. Напомним, что к. п. д. цепных передач составляет в среднем т] = 0,86- 0,98 и зависит от качества изготовления деталей передачи и ее сборки. 352  [c.352]

Набухание возникает в том случае, когда молекулы паров имеют высокое сродство к структурным элементам молекул полимера и активно взаимодействуют с ними. Проникая в промежутки менаду этими элементами, они раздвигают их, заполняя образующиеся при этом микрополости. В соответствии с этим набухание носит весьма избирательный характер. Полярные полимеры хорошо сорбируют пары полярных жидкостей и набухают в них, как это имеет место, например, в случае целлюлозы в воде. Но они практически не набухают в неполярных жидкостях и их парах, примером чему могут служить полярные каучуки и резины на их основе, которые не набухают в неполярных маслах и бензине и поэтому являются маслостойкими. Неполярные полимеры наоборот, хорошо сорбируют пары неполярных жидкостей и набухают в них (неполярные каучуки и резины в бензине) и практически не набухают в нарах полярных жидкостей (неполярные каучуки в воде). При выполнении правила полярности набуханию наиболее сильно подвержены полимеры с гибкими цепями и рыхлой упаковкой. С увеличением жесткости цепей и плотности их упаковки набухание полимера ослабляется, так же как и при увеличении степени сшивки пространственных полимеров.  [c.92]

Выбор жесткости цепи нагружения испытательной установки для поддержания постоянной скорости деформации при испытании  [c.69]

Жесткость машины ем определяется выражением ем=А /А4 (Me — упругая деформация). При постоянной величине нагрузки упругая деформация элементов цепи нагружения не изменяется и скорость деформации рабочей части образца длиной /р определяется номинальной скоростью движения захвата машины Vh. е = ин/ р.  [c.70]

Как следует из выражения (2.5), независимо от режима нагружения отклонение действительной скорости деформации от номинальной определяется отношением жесткостей цепи нагружения и рабочей части образца. В области упругого поведения исследуемого материала модуль М соответствует модулю Юнга Е и, следовательно, действительная скорость деформации наиболее сильно отклоняется в сторону уменьшения от номинальной. Отрицательная величина модуля М вызывает более высокую скорость деформирования, чем номинальная, и последняя достигает предельно высокой величины при Л1=ем/рМр- Отсюда следует, что участки резкого изменения скорости роста нагрузки (за зубом текучести, у точки разрушения) отличаются наибольшим нарушением принятого для испытания закона нагружения. Чем выше жесткость цепи нагружения и податливость образца, тем меньше отклонение действительного режима нагружения от номинального. Точное поддержание заданного закона нагружения или деформации требует применения системы со следящим приводом.  [c.71]


Деформирование образца по схеме рис. 20, а между двумя массами обеспечивает наиболее высокую жесткость цепи нагружения, которая снижается введением упругих элементов для  [c.72]

Компоновка станка отличается большой жесткостью, в нем, в частности, применен крестовый стол. Зубчатые редукторы приводов подач имеют параллельные кинематические цепи, которые замкнуты на выходном валу. За счет предварительного натяжения в них выбирается зазор. Устойчивость привода обеспечивается также приме-  [c.219]

Рис. 2. Влияние параметров привода на динамические нагрузки в упругих связях махового момента двигателя (а), числа зубьев звездочки (б), скорости волочения (в), жесткости цепи (г) Рис. 2. <a href="/info/349561">Влияние параметров</a> привода на <a href="/info/4944">динамические нагрузки</a> в <a href="/info/367430">упругих связях</a> <a href="/info/184">махового момента</a> двигателя (а), числа <a href="/info/271721">зубьев звездочки</a> (б), <a href="/info/96636">скорости волочения</a> (в), жесткости цепи (г)
Здесь и — напряжение источника питания i — мгновенное значение тока в катушке муфты г — активное сопротивление цепи катушки муфты L — индуктивность катушки муфты t — время , X — перемещение якоря вдоль вала Р — электромагнитная сила А — постоянный коэффициент Ф — магнитный поток т — масса якоря /о — коэффициент трения Сц — жесткость пружины Рд — начальное натяжение пружины ср — угол поворота главного вала машины — момент трения между якорем и электромагнитом  [c.66]

Будем характеризовать статическую жесткость величиной линейного смещения зуба режущего инструмента, вызванного упругой деформацией кинематической цепи при приложении расчетной нагрузки  [c.90]

Создание технологии машиностроения как науки принадлежит советским ученым профессорам А. Н. Каширину, М. Е. Егорову, Б. С. Балакшину, Н. А. Бородачеву, А. П. Соколовскому, В. М. Ко-вану, Э. А. Сатель, А. Б. Яхину и др. Ими разработаны теоретические основы технологии машиностроения и дано научное обоснование вопросам точности обработки деталей, расчетов размерных цепей, жесткости системы станок — деталь — инструмент, вибрации при обработке металлов на металлорежущих станках, типизации технологических процессов и др. В развитии технологии машиностроения также большую роль сыграли научно-исследовательские и проектные институты.  [c.3]

Однако суммарная нагрузка (Р ) не опред яет общей нагрузки за ущую ветвь цепи, истинная величина полной нагрузки зависит аце.от жесткости самой цепи, жесткости системы опор, а также от ютагаств расчета параметров передачи и монтажа. При больших вели-швах предварительного натяжения Рдй (например, за счет перетяжки (олостоя ветви) полная нагрузка в десятки раз превышает суммар- У [Н41.  [c.573]

Масса якоря М, общая жесткость пружин с. Самоиндукция катущки изменяется вследствие изменения воздушного зазора в - магпитопроводе 1 — 1 х) х — вертикальное смещение якоря из положения, когда пружины не напряжены). К катущке присоединена электрическая цепь, состоящая из элемента с заданной э. д.с. Е, сопротивление цени равно Я. Составить уравнения движения системы и определить ее положение равновесия.  [c.370]

Упругие звенья соединяются кинематическими парами в кинематическую цепь, обладающую упругими свойствами. Поэтому вводят понятие жесткости механизма, под которым подразумевают силу или момент силы, приложенные к вхоОному звену и вызывающие его единичное линейное или угловое перемеи ение. Жесткость механизма зависит от структурной и конструктивной схемы, жесткостей его звеньев, от вида кинематических пар, соединяющих звенья, и упругих свойств их элементов. Податливость механизма, состоящего из п звеньев, последовательно соединенных р кинематическими парами, равна сумме податливостей его звеньев и кинематических пар Х с  [c.295]

Рассмотрим определение жесткости зубчатого передаточного механизма (рис. 23.3). При зафиксированном положении звена 4 и приложении к колесу / момента М из-за деформации всех звеньев и пар этой кинематической цепи оно повернется на угол ф. Тогда жесткость механизма составит См = М/ф. Определяя угловые деформации (податливости) каждого из упругих соединений и приводя их к колесу 1, получтш  [c.295]

Произведенная операция приведения податливостей звеньев кинематической цепи позволяет задачу о движении многомассной системы с несколькими степенями свободы свести к задаче о системе двухмассной и производить исследование по динамической модели, изображенной на рис. 171. На этой модели слева представлена масса с приведенным моментом инерции Уд ротора двигателя, справа масса с приведенным моментом инерции У масс ротора рабочей машины и колес. Обе массы соединены валом с приведенным коэффициентом жесткости с .  [c.262]

Посадка маховика не на кривошипный, а на другой вал привода, вращающийся с большей скоростью, позволяет существенно уменьшить момент инерции, массу и габариты махового колеса. Этот вариант применяют все чаще по мере прогресса редукторостроения и выпуска достаточно надежных и долговечных передач, выдерживающих резкие колебания нагрузки. При посадке махового колеса следует учитывать жесткость кинематической цепи привода и сохранение постоянства передаточного отношения. Недостаточная жесткость может вызвать в приводе такие упругие колебания, которые не позволят маховику выполнить его задачу в полной мере.  [c.388]


Пусть, например, кинематическая цепь состоит из п последовательно соединенных пар зубчатых колес с упругими валами. Обозначим через С коэффициент жесткости звена i и через Сп — приведенный коэффициент жесткости. Если вращающие моменты Mi для звена i и М ля звена прнведения выражают только моменты упругих сил Мг = сАфг Mn = A pn, где Аср,- — угол закручивания звена i Афп — угол закручивания звена приведения, то условие равенства потенциальной энергии до и после приведения имеет вид  [c.111]

Приведение жесткостей упругих звеньев механизма. В предыдущих главах учитывалась жесткость (упругость) только одного звена механизма, представленного в виде линейной пружины. При рассмотрении более сложных механизмов и необходимости учета жесткостей нескольких упругих звеньев составление и решеиие уравнений движения механизма значительно усложняется, так как каждое упругое звено вносит дополнительную степень свободы. Поэтому при решении практических задач динамики механизмов с упругими звеньями часто пользуются приближенным методом приведения жесткостей звеньев, с помощью которого отдельные участки кинематических цепей н звеньев заменяются эквивалентными цепями или звеньями, имеющими ту же жесткость (упругость), что и заменяемые участки.  [c.231]

Приведенным коэффициентом жесткости кинематической цепи называется коэффициент жесткости безмассовой пружины, имеющей ту же величину потенциальной энергии, что и заменяемая кинематическая цепь. Иногда приведенный коэффициент жесткости называют обобщенным или кваэиупругим.  [c.231]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]

Одним из основных преимуществ данной конструкции наряду с обеспечением соосности при растяжении образца и максимально возможным устранением потерь на трение при перемещении подвижного захвата является возможность измерения усилий, прилагаемых к образцу, внутри вакуумной рабочей камеры. Для этой цели подвижный захват заканчивается динамометром со сменной динамометрической балочкой 16. Динамометр работает в цепи нагружения образца как балка на двух опорах, нагруженная посредине сосредоточенной силой. Зная тарировочную зависимость динамометрической балочки, можноопределять усилия, приложенные к образцу, с минимальными потерями. Набор балочек различной жесткости с наклеенными на них тензо-  [c.81]

Получение корректных экспериментальных данных о влиянии скорости деформации на сопротивление, как показано в предыдущем параграфе, требует сохранения определенного закона нагружения в процессе испытания во всем скоростном диапазоне испытаний. Жесткость цепи нагружения испытательной машины, включающей образец из исследуемого материала, динамометр и соединительные элементы, в зависимости от сопротивления материала и его изменения в процессе испытания оказывает влияние на реализуемый закон нагружения (деформации) материала в объеме рабочей части образца [171]. Связанное с этим отклонение параметра испытания от номинального не превысит допустимых пределов при ограничении жесткости цепи нагружения. Влияние жесткости особенно существенно при резком изменении скорости деформации или нагрузки, имеющем место при переходе от упругого к упруго-пластическому поведению материала вблизи верхнего и нижнего пределов текучести, предела прочности, у точки разрушения. В связи с этим рассмотрим влияние жесткости цепи нагружения на закон деформирования. Основное внимание уделим рассмотрению отклонения от параметра испытания e = onst.  [c.69]

При повышении скорости деформирования необходимо учитывать инерцию движущихся элементов цепи нагружения, поэтому поддержание заданного параметра испытания становится затруднительным. Влияние жесткости цепи нагружения оиреде-  [c.71]

Идеальными являются амортизаторы, имеющие достаточно большую статическую жесткость и малую динамическую жесткость. Жесткостные характеристики такого типа можно получить, если сделать коэффициент обратной связи Kj в (7.35) частотно зависимым Kf = Q на низких частотах, вплоть до некоторой частоты гр, ж Kf — —1 на всех частотах выше гр. Такая амортизация будет обеспечивать достаточную устойчивость машины и в то же время будет обладать сколь угодно большой виброизоляцией па частотах, превышающих Мгр. Практическая реализация системы активной амортизации с такими амплитудно-фазовыми частотными характеристками цепей обратной связи — трудная задача.  [c.241]

Здесь 141, 1П2 и та — приведенные массы ведущей лебедки, елитковоза и ведомой лебедки Х1, хз иха — перемещения барабанов лебедок и слит-ковоза Сх2 и с з — переменные жесткости ветвей канатов кр— коэффициент пропорциональности между приведенной электромагнитной силой Р работающего двигателя и током I якорной цепи  [c.107]

Некоторые результаты исследования влияния параметров системы на динамические нагрузки приведены на рис. 2. В частности, установлено снижение коэффициентов динамичности с увеличением махового момента двигателя и числа зубьев ведущих звездочек (рис. 2, а, б) и нарастание коэффициентов динамичности с увеличением жесткости приводных цепей (рис. 2, г). Для системы привода в исследованном диапазоне скоростей волочения существуют две резонансные зоны (рис. 2, е). При лгалой глубине изменения внешнего трения в очаге деформации система в целом не испытывает значительных упругих колебаний. При увеличении внешнего трения в функции скорости амплитуда автоколебаний волочимого изделия нарастает весьма значительно.  [c.134]

Из выражения (45.41) следует, что с ростом отношения величина коэффициента z ,n уменьшается, т. е. влияние раскручивания системы, приводящее к ослаблению момента зажима, усиливается. Следовательно, при проектировании электромеханических зажимных устройств необходимо стремиться к возможно большей жесткости первого участка валопровода сравнительно с жесткостью второго участка. При —> оо получим М зост МЦ, т. е. в этом случае раскручивание отсутствует, и движение машинного агрегата происходит в два этапа. Однако реализовать указанный случай при одной самотормозяш,ейся паре практически невозможно. Чтобы обеспечить высокую м<есткость закрепления изделия или приводного узла, самотормозящуюся передачу стремятся располагать в конце кинематической цепи, возможно ближе к зажимным элементам. Применение двух самотормозя-щихся пар обычного типа резко понижает к. п. д. механизма. Таким образом, при проектировании электромеханических устройств приходится удовлетворять ряду противоречащих друг другу требований. Воспользовавшись полученными выше зависимостями, можно осуществить синтез машинного агрегата по заданным динамическим характеристикам.  [c.299]



Смотреть страницы где упоминается термин Цепи Жесткость : [c.515]    [c.372]    [c.583]    [c.222]    [c.372]    [c.56]    [c.72]    [c.242]    [c.148]    [c.3]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.745 ]



ПОИСК



Выбор жесткости цепи нагружения испытательной установки для поддержания постоянной скорости деформации при испытании

Динамика (внутренняя) цепной передачи Жесткость цепи — Расчетные формул

Жесткость ветвей цепи — Расчетные зависимости

Коэффициент безопасности втулочно-роликовых цепей жесткости зубчатых колес и вало

ЦЕПИ Модули жесткости

Цепи круглозвеииые коэффициент жесткости



© 2025 Mash-xxl.info Реклама на сайте