Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПЛОСКИЕ СИСТЕМЫ Теория внешних сил

В неоднородных уравнениях равновесия внешние объемные силы можно исключить, рассмотрев частное решение этих уравнений. Поэтому при решении плоских задач теории упругости будем исходить из системы однородных уравнений равновесия  [c.26]

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


В настоящей статье производится вывод граничного интегрального уравнения для трехмерных задач теории упругости, основанный на параметрическом представлении геометрической конфигурации и функций и численном интегрировании. Эти параметрические представления являются обобщением на-трехмерный случай представлений, уже оказавшихся эффективными при решении плоских задач теории упругости [5, 6]. Упругое тело разбивается на подобласти, что позволяет получить матрицу ленточного типа, в силу чего ее приведение выполняется легче, чем приведение матриц, полученных в предыдущих исследованиях. Коэффициенты системы уравнений хранятся в файлах внешней памяти и используется поблочное решение это позволяет экономно рассматривать большие задачи.  [c.112]

Усилия Ых, Ыу, Ыху, связанные с действующими контурными силами, в самом общем случае могут быть величинами, переменными в каждой точке пластины. В этом случае вначале необходимо решить плоскую задачу теории упругости о распределении этих усилий по плоскости пластины, а затем уже можно решать задачу устойчивости этой пластины, находящейся под действием заданной системы внешних сил.  [c.43]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

В отличие от уравнений Навье — Стокса система уравнений (22.8) и (22.3) поддается решению в ряде важных случаев. При приближенных расчетах эта система применяется не только для исследования движения в пограничном слое на плоской пластинке, но и для исследования движения в пограничном слое на криволинейных профилях. В общем случае принимается, что координата х представляет собой длину дуги вдоль профиля, а координата у измеряется по нормали к профилю. Зависимость и х, I), задающая скорость на внешней границе пограничного слоя, определяется из решения соответствующей задачи теории идеальной жидкости. Предложены уточнения уравнений (22.8) для учета криволинейности обтекаемых профилей и для  [c.256]


Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]

Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

Техническая теория продольных колебаний стержней. Под стержнем понимают одномерное упругое тело (два размера малы по сравнению с третьим), обладающее конечной жесткостью на растяжение, кручение и изгиб. Пусть стержень, отнесенный к прямоугольной декартовой системе координат Oxyz, совершает продольные колебания. Параметры стержня являются функциями только одной продольной координаты X. По гипотезе плоских сечений любые точки, лежащие в плоскости, перпендикулярной к оси стержня, имеют одинаковые перемещения =-- и (х), 112= Н = 0. Все компоненты тензоров напряжений и деформаций, кроме Оц и считают пренебрежимо малыми. Выражения для потенциальной энергии деформации, кинетической энергии и потенциала внешних сил имеют вид  [c.146]


Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]

Конденсация пара. Условимся по-прежнему одним штрихом отхмечать величины, относящиеся к жидкости, двумя штрихами — величины для газовой фазы. Зародышеобразование в пересыщенном паре соответствует обращенной системе внутренней фазой является теперь жидкая капелька. Соотношения (1.15), (2.1) останутся справедливыми, если вместо двух штрихов поставить один штрих и наоборот. Соотношение (2.2) содержит квадрат разности давлений р" — р, поэтому оно также безразлично к перестановке штрихов. Уравнения теории сохраняют свой смысл. Существенное отличие появляется для выражения разности давлений во внутренней и внешний фазах р — р" через измеряемые в опыте давления р" и / д. Напомним, что р — равновесное давление в случае плоской границы раздела (г оо) при заданной температуре. Уравнение (2.13) справедливо для капельки  [c.63]

Один из этих принципов впервые ввел в теорию упругости выдающийся физик Густав Кирхгоф в одной из своих фундаментальных работ, опубликованной в 1850 г. ). Стремясь в этой замечательной статье развить теорию изгиба тонкой плоской упругой пластинки, он сразу же успешно вывел из экстремального условия для потенциальной энергии линейное дифференциальное уравнение в частных производных четвертого порядка для малых прогибов упругой пластинки (уравнение Лагранжа) и дифференциальные выражения для полной системы двух граничных условий, необходимых для определения формы изогнутой срединной поверхности пластинки. Таким образом, он впервые установил корректные выражения для этих двух граничных условий после многочисленных безуспешных попыток, предпринимавшихся в течение первой половины девятнадцатого столетия математиками французской школы (в том числе Пуассоном). Они утверждали, что поверхность слегка изогнутой упругой пластинки и решение указанного дифференциального уравнения четвертого порядка для прогибов пластинки должны удовлетворять трем независимым граничным условиям, тогда как Кирхгоф установил, что достаточно всего двух ). Он достиг этого применением принципа возможных перемещений, приравняв нулю первую. вариацию определенного интеграла, выражающего полную потенциальную энергию изогнутой пластинки как сумму энергии упругой деформации, вызванной внутренними напряжениями, деформирующими пластинку при изгибе, и потенциальной энергии системы внешних сил (нагрузок), изгибающих пластинку. Внеся вариацию под знак интеграла и применив ее к подинте-гральному выражению, он нашел дифференциальное уравнение  [c.142]

Решение задачи об обтекании полубесконечной тонкой пластины потоком вязкой жидкости в рамках теории пограничного слоя хорошо известно и описывается решением Блазиуса. Если на поверхность пластины поместить препятствие, а это можно сделать различными способами, то течение становится трехмерным. Внешнее течение, которое необходимо для расчета пограничного слоя, в случае цилиндрического или осесимметрического препятствия находится из теории потенциального плоского или осесимхметрического идеального течения, поскольку бесконечно тонкая пластина возму-ш,ения в идеальное течение не вносит. Например, в случае бесциркуляционного обтекания цилиндра, пересекающего плоскость, потенциал течения известен Ф = сх ) + / x +z )). Составляющие скорости в системе координат х, г, связанной с центром цилиндра, имеют вид  [c.177]


Последняя теорема потенциальной теории, представляющая собой интерес при рассмотрении известных типов задач течения, относится к тому случаю, когда течение обладает геометрической плоскостью симметрии и граничные условия являются также симметричными относительно этой плоскости. При этом они симметричны скорее с внешней стороны, чем по их чиспенным значениям. Тогда распределение потенциала и линий тока внутри системы будет также симметричным относительно этой плоскости при условии, что счет эквипотенциальных линий будет вестись по абсолютному значению их разности, считая от потенциала плоскости симметрии. Приведенные выше различные аналитические решения обнимают собой наиболее важные с практической стороны задачи о плоском течении. Однако следует заметить, что даже небольшие изменения в геометри и различных течений могут не только сделать недействительными первоначальные аналитические решения, но даже привести к непреодолимым математическим трудностям при выводе новых правильных решений. В таком случае следует прибегнуть к приближенным аналитическим методам или даже к не аналитическим, т. е. к эмпирическим решениям.  [c.212]


Смотреть страницы где упоминается термин ПЛОСКИЕ СИСТЕМЫ Теория внешних сил : [c.577]    [c.189]    [c.264]    [c.147]    [c.78]    [c.226]   
Смотреть главы в:

Графический расчет стержневых систем и механизмов  -> ПЛОСКИЕ СИСТЕМЫ Теория внешних сил



ПОИСК



Система сил, плоская

Теория систем



© 2025 Mash-xxl.info Реклама на сайте