Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические и тепловые свойства твердых тел

Первая глава — Механические и тепловые свойства твердых тел — является в некоторой степени химической, поскольку довольно легко прослеживается переход от свойств индивидуальных атомов и молекул к свойствам ассоциаций указанных частиц в виде регулярно-упорядоченных систем — кристаллов.  [c.3]

МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.5]

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]


Посмотрим теперь, как влияют изменения решетки под действием облучений на макроскопические, механические и тепловые свойства твердого тела. [3 2. изменение монокристалла урана-  [c.653]

Результаты и методы теории упругости не всегда достаточны для оценки прочности конструкций и для разрешения многих важных практических вопросов. На практике часто требуется уметь учитывать механические и тепловые свойства твердых тел, связанные с нелинейной упругостью, электродинамическими эффектами и с термодинамической необратимостью процессов деформирования, требуется рассматривать пластичность, ползучесть и релаксацию, усталость и т. д. Для учета и описания подобных явлений необходимо вводить другие теоретические модели сплошных сред.  [c.410]

Испарение (кипение) и конденсация, плавление твердых тел и отвердевание расплавов — процессы теплообмена, отличительной чертой которых является выделение скрытой теплоты фазового перехода на поверхности раздела. Отвод теплоты от этой поверхности или подвод к ней осуществляется через соприкасающиеся фазы посредством теплопроводности, конвекции и, возможно, излучения. Поскольку физические свойства фаз (например, воды и пара) различны и скачкообразно изменяются при переходе через межфазную границу, то математическую формулировку процессов переноса составляют отдельно для каждой непрерывной фазы (см. пп. 1.1.2 и 1.1.3), после чего описывают механическое и тепловое взаимодействие между ними.  [c.55]

Микроскопическая неоднородность физико-механических свойств характерна для всякого твердого тела. В металлах она обязана анизотропии кристаллов. Обработанная поверхность в связи с особенностями ее образования отличается несравненно большей неоднородностью как по химической активности, так и физико-механическим свойствам. Кроме того, она имеет много микроскопических дефектов в виде трещин и пустот. Хотя подобные дефекты структуры возникают в процессе образования всей массы металла, но количество их в поверхностном слое возрастает в результате механических и тепловых воздействий при обработке.  [c.56]

Деформация и различные другие проявления механических свойств твердых тел являются результатом воздействия некоторых внешних, по отношению к данному элементу тела, факторов. В простейшем случае такими внешними факторами являются механические воздействия. Механические воздействия могут быть заданы, например, системой сил, напряжениями, перемещениями (прогиб, закручивание и т. д.) или работой, последнее чаще при ударных воздействиях. Механические напряжения могут быть вызваны и немеханическими воздействиями тепловыми, магнитными и др. Для оценки подобны.х воздействий на механические свойства их обычно выражают в напряжениях, например стеснение температурного расширения. Для понимания закономерностей деформации, разрушения и механических свойств и особенно для управления (регулирования) процессами деформации и разрушения необ.ходимо привлечение некоторых основных понятий и методов механики.  [c.25]


Затрудненность перемещения макромолекул относительно друг друга придает полимерам свойства твердого тела. Но в это же время отдельные отрезки макромолекулярных цепей, будучи в непрерывном движении, в каждый момент времени находятся в ином положении по отношению к соседним макромолекулам. Это качество полимера придает ему многие свойства, характерные для жидкостей предельно высокой вязкости. Однако низкомолекулярные жидкости мгновенно изменяют взаимное расположение молекул с изменением внешних условий, в то время как все конформационные изменения макромолекул полимера совершаются очень медленно, отставая от изменений внешнего воздействия. Установление равновесного состояния в полимере отстает от скорости изменений внешнего воздействия тем в большей степени, чем выше в нем межмолекулярные силы. Переход полимера из одного равновесного состояния в другое носит название релаксации. Для полимеров с высокой полярностью время релаксации растягивается на многие годы и кажущиеся равновесия часто принимаются за истинные. При частых сменах знака нагрузки (механической, электрической, тепловой) цепи не успевают достигнуть равновесного состояния, соответствующего новым условиям нагрузки поэтому смена знака нагрузки заставит полимер в каждом цикле нагрузки деформироваться иначе, чем в предыдущем (явление гистерезиса). Явление гистерезиса выражено в полимере тем сильнее, чем выше релаксация и больше частота смены внешнего поля напряжения.  [c.23]

Все эти процессы упругопластического деформирования, молекулярного взаимодействия, тепловые, окислительные и вызываемые ими изменения физико-механических и химических свойств металлов в поверхностно-активном слое в конечном счете и определяют изнашивание трущихся поверхностей реальных деталей машин. Анализируя эти процессы, И. В. Крагельский обращает внимание на двойственную молекулярно-механическую их природу молекулярное взаимодействие обусловлено взаимным притяжением двух твердых тел, их адгезией механическое — взаи.м-ным внедрением элементов сжатых поверхностей. Он выделяет пять основных видов нарушения фрикционных связей, обусловливающих характер изнашивания (рис. 25). Упругое оттеснение материала / характеризуется отсутствием остаточных деформаций. Разрушение в зонах фактического касания и отделение частиц износа происходит лишь после многократного повторения нагружения. Пластическое оттеснение материала // характеризуется появлением остаточной (пластической) деформации. Число циклов нагружения, приводящее к разрушению основы, сравнительно мало (малоцикловая усталость). С увеличением нагрузки  [c.75]

Внутреннее трение — свойство твердого тела при циклическом нагружении обращать часть упругой энергии механических колебаний в тепловую. Внутреннее трение проявляется в затухании свободных колебаний твердого тела, а также в наличии петли упругого гистерезиса. Имеются материалы с высоким внутренним трением (высокой способностью к рассеиванию колебаний или, иначе, высокой демпфирующей способностью) и низким внутренним трением.  [c.25]

Целью настоящего учебного пособия является систематическое изложение основ физики твердого тела, включающих общие представления о строении кристаллов и аморфных веществ, методах исследования структуры, а также различных свойствах механических, тепловых, магнитных, оптических и др.  [c.8]

Рассмотрим задачу при наличии на поверхности тела слоя кокса, который образуется в результате выделения газов из твердого пластического материала при определенной температуре и формирования твердой решетки. Слой кокса может достигать по толщине нескольких миллиметров и существенно влиять на тепловые потоки к телу и величину уноса материала. Материал решетки кокса на границе с газовым потоком испаряется и вступает в химическое взаимодействие с потоком (механическое разрушение решетки здесь не рассматривается). Внутри материала обтекаемого тела могут происходить также эндотермические реакции , приводящие к образованию в теле нескольких слоев с различной структурой и различными термодинамическими свойствами. Каждой реакции соответствует характерная температура и скрытая теплота превращения. Пары решетки кокса вместе с газами, образовавшимися при коксовании, поступают в пограничный слой, где они могут вступать в химическое взаимодействие с компонентами смеси газов основного потока. Набегающий на тело поток также может быть многокомпонентным. Будем рассматривать стационарный режим теплового взаимодействия, когда граница газ—слой кокса, а также фронты коксования и эндотермических реакций продвигаются в глубь тела с постоянной скоростью D (тело предполагается имеющим бесконечную толщину).  [c.56]


Наибольшую эффективность использование методов и средств тепловой микроскопии приобретает в тех случаях параллельного исследования структуры и механических свойств материалов, когда в достаточно полной мере реализуется возможность анализа изменения структуры образца одновременно с изучением напряженного и деформированного состояний материала с позиций механики деформируемого твердого тела.  [c.292]

Рабочий процесс в различных теплообменных устройствах состоит в конвективном теплообмене между поверхностью твердого тела и омывающей ее жидкостью. Интенсивность этого теплового процесса, с одной стороны, определяется геометрическими свойствами и размерами твердого тела, а с другой — гидродинамическим и тепловым состоянием жидкости. При перемещении жидкости относительно твердого тела, имеющего другую температуру, механическое движение жидкости и явления распространения тепла в ней происходят одновременно, и они оказывают взаимное влияние друг на друга.  [c.125]

Анализ работоспособности теплонапряженных конструкций неразрывно связан с изучением поведения конструкционных материалов в условиях совместных тепловых и механических воздействий. При этом материал конструкции рассматривается как сплошная среда и для описания его свойств может быть использован аппарат механики деформируемого твердого тела [И, 40]. Протекающие в материале термомеханические процессы характеризуются изменением температурного, деформированного и напряженного состояний. Описание этих процессов составляет предмет термомеханики — одного из направлений механики деформируемого твердого тела.  [c.7]

При сжатии вещества резко возрастают силы отталкивания между соседними атомами, что как бы локализует положение атомов, затрудняя их свободное перемещение. Данное обстоятельство поднимает потолок температур, при которых еще можно считать, что атомы совершают колебательное движение. Если температуры не слишком большие, то поведение веществ определяется конкретными особенностями электронного энергетического спектра атомов, составляющих кристаллическую решетку, вследствие чего поведение твердых тел характеризуется большим разнообразием свойств каждого химического элемента. Это требует привлечения для расчета свойств конденсированных сред прямых квантово-механических методов. Чаще всего предполагают, что тепловая энергия и тепловое давление определяются вкладом энергии ядер и электронов, которые рассматриваются независимо.  [c.44]

Существуют различные виды изнашивания усталостное, абразивное, адгезионно-механическое, эрозионное, коррозионно-механическое и др. Интенсивность изнашивания деталей машин зависит от формы, размеров, физико-химических свойств, условий нагружения и теплового режима работы контактирующих поверхностей, а также физико-химических свойств смазочного материала. В зубчатых передачах, подшипниках качения и некоторых других механизмах при работе возникает усталостное изнашивание (выкрашивание), характерное для хорошо смазанных контактирующих поверхностей деталей машин, которые испытывают повторные контактные напряжения и работают в режимах качения и качения со скольжением. Абразивное изнашивание возникает в результате режущего или царапающего действия твердых тел и частиц. Данный вид износа типичен для механизмов, функционирующих в запыленной среде, в условиях недостатка смазки, при работе всухую. В трущиеся контакты в процессе работы попадают частицы песка, пыли, грязи, продукты износа. Интенсивность абразивного изнашивания механизмов зависит от физико-механических и геометрических характеристик абразива, его количества, прочностных свойств материала трущихся тел, действующей нагрузки, состояния смазочного слоя. В местах контакта  [c.9]

Терморадиационная сушка основана на принципе поглощения краской и окрашенным изделием тепловых лучей нагретого тела излучателя. Возникающее в результате этого повышение температуры окрашенной поверхности вызывает быстрое высыхание лакокрасочного слоя, превращающегося в твердую пленку, которая в большинстве случаев приобретает более высокие фи-зико-механические свойства, чем пленка, полученная при обычной печной сушке.  [c.106]

Согласно молекулярно-механической теории трения, при скольжении одной поверхности по другой отдельным точкам контакта сообщается некоторое количество движения, которое вследствие конечной прочности твердого тела приводит к колебательному движению молекул внутри тела, нагреву его. Если имеет место трение покоя, то мгновенно возникающий тепловой источник рассасывается и температурный нагрев зоны касания не имеет места если же имеет место трение скольжения, то тонкий поверхностный слой разогревается, механические свойства его изменяются, изменяется характер образующихся на поверхности тела пленок и соответственно изменяется  [c.301]

Как следует из молекулярно-механи-ческой теории внешнего трения и усталостной теории изнашивания твердых тел И.В. Крагельского, фрикционно-износные характеристики и механические свойства материалов пар трения находятся в различных нелинейных функциональных зависимостях. При этом эти зависимости могут существенно меняться в зависимости от режима трения и, в первую очередь, от теплового режима работы пар трения.  [c.249]

Важным фактором, определяющим надежность соединения элементов металлоконструкций, является прочность и стабильность контактов между поверхностью металла и клея. Реальная прочность твердых тел на 2—3 порядка ниже рассчитанной теоретически по силам взаимодействия между частицами тел. Это объясняется наличием микротрещин, представляющих собой начальные дефекты, возникающие в материале в результате тепловых, механических и других воздействий. Трещины могут возникнуть также на включениях или неоднородностях, обладающих отличными от основного материала механическими свойствами. В клеевых соединениях свойства компонентов существенно различны, поэтому условия для образования дефектов особенно благоприятны из-за напряжений на границе раздела фаз, возникающих при формировании и эксплуатации системы. Эти напряжения увеличиваются из-за различия деформационных характеристик компонентов при действии температуры, влажности, внешних нагрузок. Развитие трещин в зависимости от соотношения скоростей разрушения и релаксации напряжений может происходить с  [c.480]


В соответствии со сказанным книга содержит четыре главы. В главе I сгруппированы вопросы, относящиеся к проблеме генерации мощного лазерного излучения. В главе П рассматриваются общие вопросы поведения различных типов вещества в поле мощного лазерного излучения, включая лазерный нагрев однородной и неоднородной плазмы, механическое действие лазерного излучения на свободные заряды и твердые тела, резонансные и нерезонансные воздействия лазерного излучения на конденсированные среды, тепловое воздействие лазерного излучения. В шаве III затрагиваются основные проблемы нелинейной оптики под углом зрения описания поведения и взаимодействия световых волн в нелинейных средах и самовоздействия лазерных пучков и импульсов. В главе IV содержится сжатое изложение основных принципов диагностики вещества методами нелинейной лазерной спектроскопии. В дополнении приведено соотношение между классическим и квантовым описаниями резонансных процессов в лазере, дана методика определения свойств пространственной симметрии тензоров нелинейных оптических восприимчивостей.  [c.7]

Книга посвящена рассмотрению широкого круга физических явлений, определяющих принципы построения и работы РЭА и ЭВЛ и технологических процессов их изготовления — физической природе механических, тепловых,, алектрнческих и магнитных свойств твердых тел н пленок, адгезионной связа и механической стабильности и надежности пленочных структур, природе кои-тактных и поверхностных явлений, термоэлектрических, гальваномагнитных, оптических и фотоэлектрических эффектов и механизму переноса зарядов через топкие пленки.  [c.2]

Настоящая книга написана в полном соответствии с программой курса, утвержденной Минвузом СССР 05.09.74 г., и представляет собой краткое введение в теорию широкого круга явлений, с которыми приходится непосредственно иметь дело конструктору и технологу радиоэлектронной и электронно-вычислительной аппаратуры. Цель книги — помочь читателю понять физическую природу механических, тепловых, магнитных и электрических свойств твердых тел, контактных и - поверхностных явлений в полупроводниках, наиболее широко используемых в современной радиоэлектронике. В книге освещены также термоэлектрические, гальваномагнитные, оптические и фотоэлектрические явления в полупроводниках и механизмы переноса зарядов в тонких пленках. На этих явлениях основана работа широкого класса электронных приборов датчиков температуры, индукции магнитного поля, фотоэлектрических приборов, лазеров, тонкопленочных элементов и т. п.  [c.3]

Книга посвящена рассмотрению физической природы механических, тепловых, электрических и магнитных свойств твердых тел и пленок, природы адгезионной связи и механической стабильности пленочных структур, природы контактных и поверхностных явлений, термоэлектгш-ческнх, тльваномагиитиых, оптических и фотоэлектрических эффектов и механизма переноса тока сквозь тонкие пленки.  [c.352]

Механические свойства твердого тела отражают его реакцию на воздействие некоторых внешних факторов. В простейшем случае такими внешними факторами являются механические воздействия сжатие, растяжение, изгиб, удар, кручение. Кроме механиче-v KHx существуют тепловые, магнитные, электрические и другие воздействия.  [c.114]

В настоящее время проектируется и строится несколько реакторов. В Арко (Айдахо) предстоит построить два реактора. Один будет работать на горючем, обогащенном или Ри для получения мощного потока нейтронов в целях изучения действия нейтронного облучения на различные материалы. Бьхтрые нейтроны выбивают атомы из занимаемых ими положений в кристаллической решетке твердого тела, изменяя тем самым его механические, электрические и тепловые свойства. Необходимо, чтобы введение этих материалов не прерывало цепной реакции. Второй реактор будет использован главным образом для изучения возможности создания бридеров. Этот реактор будет иметь небольшое количество замедлителя и работать с нейтронами средних скоростей, так называемых промежуточных.  [c.139]

В начале тридцатых годов стали интенсивно развиваться исследования, связанные с изучением механических свойств аморфных и высокомолекулярных твердых тел. Развитие этого направления связано с именами А. П. Александрова, П. П. Кобеко, М. О. Корнфельда, Е. В. Кувшинского и др. Приблизительно к этому же периоду относится зарождение представлений о ведущей роли теплового движения в определении механических свойств твердых тел. Такой подход в значительной мере основывался на идеях Я. И. Френкеля о термофлуктуационном механизме движения частиц, едином для всех жидкостей и твердых тел. Согласно этой концепции изменение конфигурации атомов в твердом теле происходит в момент тепловой флуктуации, повышающей на некоторое время локальную энергию, а внешнее напряжение приводит лишь  [c.423]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]

ТВЕРДОСТЬ — сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела -наконечника ТЕКСТУРА < — анизотропия свойств вещества, возникающая в процессе его формирования под влиянием механических, тепловых, магнитных или электрических воздействий кристаллическая — преимущественна я ориегттация кристаллических зерен в поликристаллах магнитная — преимущественная пространственная ориентация осей легкого намагничивания в поликристаллических ферромагнитных и ферримагнитных образцах, приводящая их к анизотропии)  [c.280]

ТЕКУЧЕСТЬ <— Boii TBO тел пластически деформировал ься под действием механических напряжений — величина, обратная вязкости) ТЕЛО [ -макроскопическая система, размеры которой во много раз превышают расстояния между составляющими ее молекулами абсолютно (твердое сохраняет постоянство расстояний между любыми точками этого тела черное полностью поглощает все падающие на него электромагнитные волны) аморфное не имеет правильного, периодического расположения составляющих его микрочастиц анизотропное обладает неодинаковыми свойствами по разным направлениям изотропное обладает одинаковыми свойствами по всем направлениям кpи тaллIr - кoe -твердое тело, строение которого имеет дальний порядок рабочее---термодинамическая система, используемая в тепловой машине для получения работы серое обладает коэффициентом поглощения меньше единицы, не зависящим от длины волны излучения и от абсолютной температуры твердое -- агрегатное состояние  [c.280]


В структурах алмаза, кремния, германия и алмазоподобных соединений сильным ковалентным <т-связям вдоль направлений <111> отвечают максимальные значения модулей упругости Еиь Однако, в отличие от металлов, для этого класса материалов наиболее важны не механические, а электрофизические свойства. Определение пoJ y пpoвoдникa трудно представить до рассмотрения электронной зонной теории кристаллических твердых тел. Можно сказать, что полупроводники - это изоляторы, в которых запрещенная зона между состояниями валентных электронов (валентная зона) и электронными состояниями, ответственными за электропроводность (зона проводи.мости), значительно меньше, чем в обычных изоляторах, и может быть преодолена при наличии определенных условий, например, с помощью теплового возбуждения. Поэтому, в отличие от металлов, электропроводность пoJTV пpoвoдникoв растет с температ рой.  [c.46]

Рассмотрим разрушение образца или детали на основании упрощенной модели твердого тела. В первом приближении будем считать, что изучаемый механический процесс определяется формой и размерами детали, характером приложения и величиной внешних сил, размерами образовавшейся трещины, механическими свойствами материала, некоторыми физическими характеристиками и временем. Будем пренебрегать тепловыми, акустическими и другими второстепенными эффектами, сопровождающими рэссматри-ваемый необратимый процесс, полагая в общем случае справедливой зависимость  [c.232]

Механизм высокоэластической деформации эластомеров. Высокоэластическое состояние является промежуточньш между жидким (текучим) и стеклообразным, поэтому в комхшексе механических свойств эластомера можно обнаружить свойства жидкого и твердого тел. Развитие высокоэластической деформации можно рассматривать как совокупность течения сегментов макромолекул под влиянием внешних сил. С этой точки зрения эластомеры близки к жидкостям. Процесс перегруппировки сопровождается преодолением внутреннего трения и, следовательно, рассеянием энергии. Однако, течение сегментов ограничено связями и не является необра-THMbJM. Это соответствует твердому состоянию тела. Таким образом, при высокоэластической деформации возможность свободного перемещения имеют только участки цепных макромолекул и деформация протекает во времени. Этим объясняется релаксационный характер деформации — отставание деформации Евл от изменения внешней нагрузки. После снятия внешней нагрузки участки цепи макромолекул под действием теплового движения возвращаются в первоначальное, наиболее вероятное состояние сильно свернутых конформаций. Деформация эластомера  [c.67]

Все многообразие машин можно разделить по характеру рабочего процесса на классы маигины-двигатели — энергетические машины, предназначенные для преобразования энергии любого вида (электрической, тепловой и т. д.) в механическую энергию (твердого тела) машины-преобразователи — энергетические машины, предназначенные для преобразования механической энергии в энергию любого вида (электрические генераторы, воздушные и гидравлические насосы и т. д.) транспортные машины, преобразующие механическую энергию двигателя в энергию перемещения масс и предназначенные для перемещения людей и грузов технологические машины, предназначенные для преобразования обрабатываемого предмета, состоящего в изменении его размеров, формы, свойств или состояния информационные машины, предназначенные для получения и преобразования информаций.  [c.167]

Из анализа работ, приведенных в предыдущей главе, видно, что природа контактного теплообмена при соприкосновении поверхностей твердых тел обусловливается физико-механическими свойствами материалов и геометрическими характеристиками контактирующих поверхностей. В связи с этим определение тепловой проводимости или термического сопротивления контакта может быть успешно решено лищь на основе изучения закономерностей механического контактирования поверхностей твердых тел, чему и посвящена данная глава.  [c.44]

ПРОПИТКА, технологический процесс введения жидкостей, остающихся затем в том же состоянии или дающих твердые тела, в поры и каналы различных материалов с целью повысить те или другие их свойства— влаюупорные, механические, электрические, тепловые, акустические, а также сохраняемость, цвет и внешний вид. Понятие П. охватьшает весьма значительное число отдельных и мало имеющих между собою общего процессов, и потому описать всю  [c.148]

Температура нагревания трущихся тел зависит от теплофизических свойств материала и состава поверхностного зафязнения, от конструкции и режимов нафужения трущейся пары. В реальных условиях работы узлов трения температура на контурной площади может сильно повышаться, влияя как на структурнореологические свойства поверхностного слоя так и на механические характеристики твердых тел. Степень влияния тепловых процессов, происходящих в реальных условиях, на результат трения и изнащивания запыленных тел можно оценить, зная теплофизические свойства конкретных твердых тел и поверхностного дисперсного зафязнения, реальные режимы нафужения и используя законы тепловой динамики трения и изнащивания, разработанные А.В. Чичинадзе [15, 16, 18-20].  [c.134]

АНИЗОТРОПИЯ, явление, выражающееся в зависимости физич. величин, выражающих определенное свойство твердого или жидкого тела от направления, вдо.11Ь к-рого эта величина (коэфициент теплопроводности, показатели преломления, прочность на разрыв и др.) измеряется. Тела, обладающие А., называются анизотропными в противоположность изотропным, в к-рых свойства по всем направлениям одинаковы. Анизотропная среда однородна (гомогенна) в том случае, когда зависимость физич. свойств от направления одинакова в различных точках среды. Для данного направления все физич. свойства однородного тела не зависят от положения элемента объема, длп к-рого онп исследуются. Однородная А. может быть обусловлена строением тела, наличием кристаллич. структуры или резко выраженной асимметрией его молекул, легко ориентирующихся под влиянием внешнего или собственного поля (жидкие кристаллы, кристаллич. жидкости). А. (например местная) возникает также в результате односторонних деформаций тела (возникновение неравномерно распределенных внутренних напряжений при растяжении, одностороннем сдавливании тел, закалке, вообще при разных видах механической обработки). Поверхностный слой всякого тела вызывает местную А., делая тело неоднородным вблизи поверхности раздела с окружающей средой. При этом А. поверхностного слоя выражается в том, что физич. свойства по тангенциальным направлениям (лежащим в поверхности) отличны от свойств в направлении, нормальном ij поверхностному слою. Тела м. б. анизотропны в отношении одних свойств (напр, оптических) и изотропны относительно других (напр, упругих). Кристаллы всех систем кроме кубической оптически анизотропны. В таких кристаллах по каждому направлению (за исключением направления. лучевых осей) идут два луча, оба поляризованных во взаимно перпендикулярных плоскостях. Оба эти луча распространяются в кристалле с разной скоростью. А. может быть исследована по характеру зависимости физич. свойств напр, тепловых или механических) в данной среде. В прозрачных телах для изучения А. удобнее исследовать оптич. свойства (напр, по отношению к поляризованному свету). Наиболее полным методом исследования является исследование структуры (рентгено- или электро-нографич. анализ), обусловливающей А.  [c.388]

Особое место в кузнечно-штамповочном оборудовании занимают гидравлические устройства для листовой штамповки, где в качестве энергоносителя используют детонационную волну, порожденную электрическим разрядом в жидкости. Эти устройства не имеют типовой структуры КШМ - у них нет исполнительного органа в виде твердого тела, двигательного и передаточного механизмов в обычном понимании. Тем не менее такие устройства следует классифицировать как технологические машины, поскольку производится механическое движение рабочего тела (жидкости) для изменения формы объекта труда - обрабатываемой заготовки. Отсутствует типовая структура и в магнитноимпульсных установках, основанных на использовании электромеханических сил взаимодействия магнитного поля с электрическим током в металлической заготовке. В термопрессах, использующих для технологического воздействия тепловое расширение - сжатие колонн, которые разогреваются индуцированными токами, - нет двигательного и передаточного механизмов. Как видно, во всех этих устройствах для осуществления движения, деформирующего заготовку, используют электрическую энергию и особенности физических свойств рабочего тела, деталей конструкции или заготовки. Поэтому такие устройства объединяют в класс электрофизических КШМ.  [c.10]


Механизм высокоэластичной деформации [22]. Высокоэластичное состояние является промежуточным физическим состоянием между жидким (текучим) и стеклообразным, поэтому в комплексе механических свойств эластомера можно обнаружить элементы свойств жидкого и стеклообразного тела. В простой жидкости молекулы легко перемещаются тепловым движением. Внешнее силовое поле дает преимущество перемещению в направлении поля, что приводит к возникновению макроскопически наблюдаемого течения жидкости. Развитие высокоэластичной деформации можно рассматривать как течение звеньев или групп звеньев макромолекулы под влиянием внешних сил. С этой точки зрения полимеры (и, в частности, эластомеры) близки к жидкостям. Однако, поскольку все звенья в цепи связаны, а цепи сшиты в пространственную сетчатую структуру, то их течение ограничено связями и не является необратимым. Это соответствует твердому состоянию тела. Таким образом, при высокоэластичном состоянии возможность свободного перемещения имеют только участки цепных макромолекул при отсутствии заметных перемещений макромолекулы в целом. Тепловые движения п эиводят к многочисленным-конформациям этих участков, при которых расстояние между узлами цепей пространственной сетки намного меньше контурной длины участков цепи. Под действием внешней силы цепи изменяют свои конформации, причем проекции участков в направлении деформации удлиняются (или сокращаются). Деформация развивается путем последовательного перемещения сегментов этих участков из одного положения в другое, т. е. протекает во времени [4, 49]. Этим объясняется отставание высокоэластичной деформации от изменения внешней нагрузки. Процесс перегруппировки сегментов сопровождается преодолением внутреннего трения и, следовательно, рассеянием механической энергии. После прекращения действия внешней силы участки цепи под действием теплового движения вновь вернутся в наиболее вероятное состояние сильно свернутых конформаций. По терминологии термодинамики переход в более вероятное состояние системы связан с возрастанием энтропии. Поэтому эластомеры имеют энтропийный характер деформации деформация связана с уменьшением энтропии, а возвращение в начальное положение — с увеличением ее. На основе законов термодинамики разработана статистическая (кинетическая) теория деформации и прочности полимеров, устанавливающая связь механических характеристик с температу-4 51  [c.51]


Смотреть страницы где упоминается термин Механические и тепловые свойства твердых тел : [c.7]    [c.211]    [c.376]    [c.128]    [c.47]    [c.34]    [c.297]   
Смотреть главы в:

Введение в физику твердого тела  -> Механические и тепловые свойства твердых тел



ПОИСК



Пар Тепловые свойства

Твердые Механические свойства

Тепловые свойства твердых тел



© 2025 Mash-xxl.info Реклама на сайте