Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые элементы аналитической механики

В томе III содержится отдел курса, посвященный динамике й теории устойчивости деформируемых систем. Даны некоторые элементы аналитической механики. Рассматриваются малые колебания систем с конечным и бесконечным числом степеней свободы. Приводятся краткие сведения о нелинейных колебаниях. Излагается теория удара. Теория устойчивости равновесия деформируемых систем излагается с использованием аппарата динамики.  [c.2]

Фундаментом для проблем как динамики, так и устойчивости является аналитическая механика. Вот почему первым параграфом (если не считать краткого вводного параграфа) книги ( 17.2), включенным в главу о динамике, является параграф, посвященный краткому изложению некоторых элементов аналитической механики, используемых при изложении материала книги.  [c.4]


НЕКОТОРЫЕ ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ  [c.9]

Некоторые элементы аналитической механики 1. Основные понятия.  [c.9]

Прежде всего отметим, что еще на рубеже XIX века рассматривались вопросы движения небесных тел при внезапном отделении от них некоторой массы. Так Ж.Л. Лагранж в Аналитической механике исследовал изменение элементов орбиты планеты при получении ею в некоторый момент времени какого-либо импульса, в том числе за счет отделения от планеты определенной малой ее части с заданной относительной скоростью. Однако эти случаи мгновенного конечного изменения массы тела не входят в рассматриваемое понятие системы с переменной массой, так как у нас имеется в виду именно непрерывное изменение массы.  [c.37]

Методы аналитической механики, с элементами которой мы теперь познакомимся, позволят нам при некоторых ограничениях, наложенных на связи системы, полностью решить задачу о ее движении или равновесии.  [c.309]

В настоящей главе рассмотрены наиболее простые элементы конструкций, допускающие аналитическое решение нелинейной краевой задачи. Иллюстрируя закономерности устойчивого закритического деформирования материала в ослабленных зонах, полученные решения, кроме того, являются основой методического обеспечения некоторых экспериментальных исследований. Рассмотрены вопросы численного решения задач механики закритического деформирования и разрушения в более общих случаях. Часть результатов отражена также в работах [47, 49, 51, 311].  [c.221]

Численные расчеты с помощью ЭВМ показывают, что пластическая зона развивается по-разному (рис. 78). При плоской деформации пластическая зона вытянута поперек линии трещины, а при плоском напряженном состоянии она простирается вперед по направлению роста трещины. Рассмотренные экспериментальные и численные результаты подтверждают правомерность некоторых упрощенных теоретических моделей, на основании которых можно получить аналитические решения задач о разрушении элементов конструкций за пределами области применимости линейной механики разрушения.  [c.121]

Прослеживая историю развития науки о прочности материалов и элементов конструкций можно обратить внимание на некоторое соответствие между этапами аналитически-расчетного познания явления деформирования твердых тел и этапами деформирования гладкого образца при его растяжении. В самом деле, начала учения о прочности связаны с исследованиями упругих воздействий, сопротивление которым определялось экспериментально и при этом полагалось, что этим сопротивлением и заканчивается упругое деформирование одного из контактирующих тел с ограничением соответствующих нагрузок. Процесс разрушения не выявлялся вместо него фиксировалась точка завершения стадии упругого деформирования. Нечто аналогичное мы наблюдаем и в линейной механике разрушения, в которой критериальная основа (в энергетической постановке Гриффитса или в силовой Ирвина) исходит не из процесса, а из состояния, предельного состояния равновесия, которое и ограничивает действующие на тело с трещиной нагрузки, оставляя само тело упругим вплоть до этого состояния.  [c.74]


В предыдущих главах мы пользовались эйлеровым методом описания движений жидкости. При использовании этого метода течение несжимаемой жидкости в момент I характеризуется полем скорости и(Х, 1)у т. е. значениями вектора скорости во всевозможных точках = Хи Х2, Хг) пространства (в настоящем разделе по причинам, которые будут ясны из дальнейшего, нам будет удобно обозначать координаты А /, а не л /, как в предыдущих главах). Уравнения гидродинамики (из которых давление можно исключить с помощью уравнения (1.9)) при этом в принципе позволяют определить значения переменных Эйлера и(Х, t) в любой момент времени > /о по заданным начальным значениям и(Х, о) = ио(Х). Однако для изучения таких явлений, как турбулентная диффузия (т. е. распространение примесей в поле турбулентности) или деформация материальных поверхностей и линий (состоящих из фиксированных элементов жидкости) в тур-булентном течении, более удобным оказывается лагранжев метод описания движений жидкости. Он заключается в том, что вместо скоростей жидкости в фиксированных точках X пространства за основу берется движение фиксированных жидких частиц , прослеживаемое, начиная от некоторого начального момента времени / = to. Под жидкими частицами при этом понимаются объемы жидкости, размеры которых очень велики по сравнению со средним расстоянием между молекулами (так что для соответствующих объемов имеет смысл говорить об их скорости, оставаясь в рамках механики сплошной среды), но все же настолько малы, что скорость и давление внутри частицы можно считать практически постоянными и в течение рассматриваемых промежутков времени эти частицы можно считать перемещающимися как одно целое (т. е. без заметной деформации). Лагранжев метод самым непосредственным образом связан с реальными движениями отдельных элементов жидкости, совокупность которых и составляет течение поэтому его можно считать физически более естественным, чем эйлеров метод описания. В то же время в аналитическом отношении использование переменных Лагранжа, относящихся к индивидуальным частицам жидкости, оказывается гораздо более громоздким, чем использование переменных Эйлера и(Х, t), вслед-  [c.483]

Во-первых, благодаря этой последовательности оказывается возможным начинать изучение механики раньше, так как для овладения статикой требуются, кроме элементарной математики, лишь некоторые сведения из аналитической геометрии. Приступая к изучению кинематики, учащийся должен быть знаком с элементами дифференциального исчисления, и лишь для усвоения динамики требуется знакомство с интегральным исчислением и с интегрированием дифференциальных уравнений.  [c.12]

Все вопросы, предусмотренные программой, р ассматриваются с единой точки зрения, с позиций аналитической механики. В обычном курсе явно выделяется низший (статика и некоторые разделы кинематики) и высший (элементы аналитической механики) конценгры. В предлагаемой схеме все изложение ведется на уровне высшего концентра. Это позволяет глубже понять вопросы низшего концентра, лучше усвоить вопросы высшего и, между прочим, сэкономить время.  [c.76]

Во-первых, изменено название книги , вместо Основы аналитической механики дано название Теоретическая механика , что с точки зрения современной терминологии более отвечает содержанию книги. Затем, в изложение введены символы и операции векторного исчисления. В сбязи с этим вводная глава о векторах дополнена элементами векторной алгебры и анализа. Переход на векторное изложение- вызвал некоторые изменения в изложении кинематики, общих теорем динамики, динамики твёрдого тела и теории связей. Там, где это оказалось возможным сделать без нарушения стиля автора, терминология и обозначения приведены в соответствие с ныне употребляемыми. Уточнены некоторые доказательства и устранены встречающиеся иногда редакционные недосмотры и шероховатости текста. Переработано приложение Третий закон Ньютона имеющиеся здесь положения частично включены в гл. XIV Основные законы механики . Кроме того, исправлены ошибки в вычислениях, встречающиеся в некоторых примерах, а также несколько увеличено число чертежей (вместо 12й дано 155).  [c.659]

Введение. Слово теория употребляется в небесной механике для обозначения некоторого математического выражения, из которого можно получить координаты небесного тела как функции времени. Существуют теории двух типов — специальные и общие. Специальной теорией является такая теория, которая дает координаты только для частных значений времени численное интегрирование уравнсни гелиоцентрического движения кометы пли планеты является примером специальной теории. В общей теории время изображается символом, вместо которого по желанию можно подставить любое значение и получить координаты для соответствующей даты поэтому общая теория не может быть целиком численной по форме. Она может быть целиком аналитической, как, например, теория Луны Делонэ, которая выражает координаты в виде функций от семи символов, соответствующих шести элементам орбиты и иремени либо она может быть частично аналитической и частично численной, как, напрпмер, теория Луны Брауна, в которой вместо некоторых элементов подставлены численные значения. Имеются также общие теории, в которых численные значения подставляются вместо всех элементов, и единственной величиной, обозначенной символом, является время, напрпмер, теория Юпитера Хилла такие теории обычно, хотя и несколько неточно, называются числениы.ми общи.ми теориями.  [c.178]


Широкое внедрение ЭВМ в расчетную практику позволило создать библиотеки подпрограмм для различных элементов оболочек и пластин, позволяющие по единообразным данным о геометрии элемента, поверхностным и краевым нагрузкам и перемещениям вычислить неизвестные перемещения, усилия и напряжения в сечениях элементов. Для многих тонкостенных элементов постоянной толщины имеются аналитические формулы, например для цилиндрических, сферических, конических оболочек, круглых и кольцевых пластин, некоторых оболочек линейно-переменной толщины. Традиционные методы строительной механики - методы сил, перемещений, начальных параметров — позволяют рассчитьшать конструкции, представленные в виде различных комбинаций базисных элементов. Численная процедура сводится к решению систем алгебраических уравнений относительно неизвестных перемещений или усилий в местах сопряжения элементов.  [c.45]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Десятая глава посвящена проблеме изучения и использования условий устойчивого закритического деформирования материалов в элементах конструкций. Рассмотрены наиболее простые деформируемые тела, допускающие аналитическое решение нелинейной краевой задачи. Полученные решения, иллюстрируя закономерности изучаемого механического явления, являются, кроме того, элементами методического обеспечения некоторых зкспериментальных исследований. Показано, что обеспечение условий равновесного накопления повреждений на закритической стадии деформирования является способом использования резервов несущей способности, которые могут быть весьма значительными, и целью оптимального проектирования конструкций на базе соответствующего развития численных методов решения кргъевых задач механики. Рассмотрен вопрос оценки устойчивости накопления повреждений на закритической стадии деформирования при решении краевых задач методом конечных элементов. Приведены аналитические и численные решения краевых задач, иллюстрирующие процессы развития зон разупрочнения в деформируемых телах. Обсуждается методология прочностного анализа на основе понятия "катастрофичность разрушения .  [c.13]

Прослеживая историю развития науки о прочности материалов и элементов конструкций, можно обратить внимание на некоторое соответствие между этапами аналитическо-расчетного познания явления деформирования твердых тел и этапами деформирования гладкого образца при его растяжении. В самом деле, начало развития учения о прочности связано с исследованиями упругих воздействий, сопротивление которым определяли экспериментально, и при этом полагали, что этим сопротивлением и заканчивается упругое взаимодействие одного из контактирующих тел с ограничением соответствующих нагрузок [2]. Процесс разрушения не выявлялся вместо него фиксировалась точка завершения стадии упругого деформирования. Нечто аналогичное мы наблюдаем и в линейной механике разруше-  [c.56]

Продолжались также работы по построению аналитических теорий движения спутников Юпитера, Сатурна, Урана и Нептуна, а в самое последнее время начались работы по изучению движения спутников Марса. В этих работах применялись обычные методы теории возмущений небесной механики для определения возмущений координат или кеплеровых элементов орбит или строились теории, в которых за промежуточную орбиту принималась некоторая периодическая орбита, отличная от кеплерова эллипса.  [c.351]

Поэтому особенности могут появляться, только когда граница или некоторые из исходных данных не будут гладкими. К сожалению, эти случаи встречаются часто, например в задачах механики разрушения, и при наличии особенностей продолжение исследований методом конечных элементов на равномерной сетке даст совершенно неудовлетворительные результаты. Как и в разностных аппроксимациях, эффективным приемом работы с. особенностями оказалось локальное сгущение сетки (в том смысле, который обсуждался в предыдущих главах). Однако о природе особенностей, возникающих в эллиптических задачах, известно много и специальная форма вариационного метода стимулирует нас к использованию этой информации в приближении Ритца-Галёркина. Данная глава и посвящается этой задаче. Мы начнем с выявления аналитической формы особенностей, которые могут возникнуть.  [c.298]


Смотреть страницы где упоминается термин Некоторые элементы аналитической механики : [c.35]    [c.548]    [c.9]    [c.12]    [c.8]    [c.461]   
Смотреть главы в:

Прикладная механика твердого деформируемого тела Том 3  -> Некоторые элементы аналитической механики



ПОИСК



Аналитическая механики

Механика аналитическая

Элементы аналитической механики



© 2025 Mash-xxl.info Реклама на сайте