Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическая энергия материальной точки, системы и твердого тела

В случае неизменяемой системы материальных точек, например, абсолютно твердого тела, сумма работ внутренних сил равна нулю и теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.305]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]


В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Как записывается теорема о кинетической энергии системы в дифференциальной и интегральной форме для свободной системы, абсолютно твердого тела и материальной точки 2. Для каких мате-  [c.58]

Т. е. 1) дифференциал кинетической энергии материальной системы на бесконечно малом ее перемеи ении равен алгебраической сумме элементарных работ всех сил на соответствующих перемещениях их точек приложения 2) приращение кинетической энергии материальной системы на конечном ее перемещении равно алгебраической сумме полных работ всех сил на соответствующих перемещениях их точек приложения. Слова всех сил означают в обоих случаях всех заданных сил и реакций связей или всех внешних и внутренних сил. В законах количеств движения и кинетических моментов внутренние силы не фигурировали, ибо их главный вектор и главный векторный момент относительно любого центра равны нулю но алгебраическая сумма работ внутренних сил в общем случае материальной системы не равна нулю, как показано в п. 5° 2 она равна нулю в частном случае абсолютно твердого тела, но уже для упругого тела не равна нулю ).  [c.206]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

Можно получить первые интегралы дифференциального уравнения вращения твердого тела вокруг неподвижной оси, используя теорему об изменении кинетической энергии системы материальных точек. Это осуществимо в задачах, где главный момент внешних сил постоянен либо зависит от угла поворота твердого тела, а в число данных и неизвестных величин входят момент инерции твердого тела относительно оси вращения, внешние силы, приложенные к твердому телу, угловое перемещение, угловые скорости твердого тела в начале и в конце этого углового перемещения.  [c.541]


Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Каждое из этих семи всеобщих уравнений движения выглядит так или иначе, в зависимости от того, для какого объекта оно составлено, написано ли оно для одной материальной точки, для твердого тела, совершающего определенное движение, или для изменяемой механической системы. Они могут быть написаны в конечном или в дифференциальном виде. В зависимости от условий задачи приходится выбирать уравнение и форму его, соответствующую заданным условиям. При этом полезно иметь в виду, что если проекции силы являются функциями времени, то часто бывает возможно проинтегрировать уравнения проекций количества движения. Уравнение кинетической энергии дает интеграл в тех случаях, когда силы являются функциями расстояния. Этим часто определяется выбор того или другого уравнения для решения задачи. Выводу семи всеобщих уравнений движения для различных движущихся объектов посвящены 35—37.  [c.132]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

Для того чтобы найти изменение кинетической энергии твердого тела, будем исходить из теоремы для системы материальных точек (14.8), которая гласит, что дифференциал кинетической энергии системы равен элементарной работе внешних и внутренних сил и записывается равенством  [c.164]


Исторически МСС развивалась параллельно с аналитической механикой системы материальных точек и абсолютно твердого тела. Но ее основные понятия полей плотности массы, векторов перемещения и скорости среды, тензоров внутренних напряжений, деформаций и скоростей деформаций, плотности кинетической и внутренней энергии и энтропии, а также законы сохранения не могут быть получены как следствия из аналитической механики и термодинамики.  [c.5]

Уравнение анергии. В 46 было показано, что кинетическая энергия любой материальной системы равна сумме кинетической энергии всей массы системы, предполагая, что вся масса сосредоточена в центре масс и движется вместе с этою точкою, и кинетической энергии относительного движения по отношению к центру масс. Следовательно, если обозначить через а, v) скорость центра масс, а через <о — угловую скорость вращения, то кинетическая энергия твердого тела, движущегося в двух измерениях, будет  [c.162]

Как известно, на заре развития механики предлагались в качестве меры механического движения для материальной точки количество движения ти (Декарт) и удвоенная кинетическая энергия (Лейбниц), но эти меры движения являются менее совершенными и менее универсальными, чем величины 81, и 8н-Для дальнейшего оказывается весьма полезной следующая геометрическая интерпретация движения системы. Пусть механическая система точек (или твердое тело) имеет 5 степеней свободы и ее положение относительно системы отсчета (материального базиса) определяется обобщенными координатами ( 1, <72, дг,, де). При движении системы обобщенные координаты будут изменяться, т. е. будут некоторыми функциями времени t. Будем рассматривать совокупность обобщенных координат (< 1, , <7 ) для каждого момента времени как координаты точки в пространстве -измерений. Тогда каждой конфигурации (положению в пространстве) механической системы будет соответствовать точка в -мерном пространстве. Так как по природе реального механического движения обобщенные координаты ( 1,. . ., дз) являются непрерывными функциями времени, то каждому конечному перемещению системы с степенями свободы в трехмерном евклидовом пространстве будет соответствовагь некоторая кривая в -мерном пространстве. Мы будем называть такое -мерное пространство пространством конфигураций, а кривую в этом -мерном пространстве, соответствующую реальному движению системы, — траекторией механической системы (соответственно твердого тела) в пространстве конфигураций. Каждая точка такой траектории в пространстве конфигураций однозначно соответствует некоторому положению в евклидовом пространстве реальной механической системы. Пользуясь введенной терминологией, можно сказать, что для реально осуществляющихся механических движений на истинной траектории в пространстве конфигураций меры движения 8ь и 8ц принимают  [c.123]

Кинетическая энергия твердого тела равна кинетической энергии, которую имела бы материальная точка, расположенная в центре инерции тела, если бы в ней была сосредоточена вся масса тела, плюс кинетическая энергия тела в его движении относительно системы отсчета, связанной с центром инерции и движущейся вместе с ним поступательно (теорема Кёнига i)).  [c.170]

Теорема Кёнига верна и для общего случая произвольной системы материальных точек. Однако она, как правило, используется при подсчете кинетической энергии твердого тела и поэтому излагается в этой главе.  [c.170]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Приращение кинетической энергии твердого тела или неизменяемой системы материальных точек) равно работе всех заданных активных внешних сил, прилоокенных к телу (или и неизменяемой системе) на рассматриваемом пути. Мы вернемся к формуле (19.27а) в пп. 2.4 и 2.5 гл. XXI.  [c.352]

Мы были лишены возможности привести подобные примеры в 2 гл. XVIII. Дело в том, что хотя понятие кинетической энергии системы материальных точек впервые вводится при выводе уравнений Лагранжа второго рода, однако формулы для подсчета кинетической энергии твердых тел и работы сил при их вращении, необходимые для составления уравнений Лагранжа, появляются позже — в гл. XXI. Теперь мы имеем возможность рассмотреть соответствующие примеры.  [c.404]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


В учебных задачах, как правило, встречаются не материальные точки, а твердые тела. В этом случае при вычислении импульса кинетического момента или кинетической энергии тела надо исходить из того, что пространственное твердое тело характеризуется массой М, положением центра масс S, тремя главными центральными направлениями е, е, е" и соответствующими главными центральными моментами инерции А, В, С. Пусть в некоторой неподвижной системе координат Oxyz точка S имеет радиус-вектор s = OS, и пусть угловая скорость тела относительно Oxyz разложена по (правому) главному реперу  [c.110]

ДИНАМИЧЕСКИЕ ВЕЛИЧИНЫ. Имеются в виду импульс, кинетический момент и кинетическая энергия, которые уже рассматривались применительно к системе свободных материальных точек в 10. В случае, когда система точек образует твердое тело, выражения для этих величин принимают специфический вид в связи с тем, что скорости точек тела образуют распределение, описываемое формулой Эйлера Vp = Vs+[ oXSP], Таким образом, в каждый момент времени скорости зависят от точки тела, а зависимость их от времени проявляется только через векторы Vs, ю, которые являются общими для всех точек тела.  [c.204]


Смотреть страницы где упоминается термин Кинетическая энергия материальной точки, системы и твердого тела : [c.526]    [c.42]    [c.179]    [c.358]   
Смотреть главы в:

Курс теоретической механики 1973  -> Кинетическая энергия материальной точки, системы и твердого тела

Курс теоретической механики 1981  -> Кинетическая энергия материальной точки, системы и твердого тела



ПОИСК



Кинетическая системы

Кинетическая энергия материальной точки и материальной системы

Кинетическая энергия материальной точки и системы

Кинетическая энергия системы

Кинетическая энергия системы твердого тела

Кинетическая энергия точки

Кинетическая энергия точки и системы точек

Кинетическая энергия—см. Энергия

Материальная

Материальное тело

Система материальная

Система материальных точек

Система точек

Системы твердых тел

Твердое тело как система материальных точек

Точка материальная

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая материальной твердого тела

Энергия кинетическая материальной точки

Энергия кинетическая материальной точки системы материальных, точек

Энергия кинетическая материальной точки точки

Энергия кинетическая системы точек

Энергия кинетическая твердого тела

Энергия системы

Энергия твердого тела

Энергия тела кинетическая



© 2025 Mash-xxl.info Реклама на сайте