Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия кинетическая материальной твердого тела

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]


В случае неизменяемой системы материальных точек, например, абсолютно твердого тела, сумма работ внутренних сил равна нулю и теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.305]

Можно получить первые интегралы дифференциального уравнения вращения твердого тела вокруг неподвижной оси, используя теорему об изменении кинетической энергии системы материальных точек. Это осуществимо в задачах, где главный момент внешних сил постоянен либо зависит от угла поворота твердого тела, а в число данных и неизвестных величин входят момент инерции твердого тела относительно оси вращения, внешние силы, приложенные к твердому телу, угловое перемещение, угловые скорости твердого тела в начале и в конце этого углового перемещения.  [c.541]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]

Если внешние силы, приложенные к твердому телу, постоянны либо зависят от положений точек твердого тела, то можно получить первый интеграл динамических уравнений Эйлера, применяя теорему об изменении кинетической энергии системы, материальных то-  [c.542]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]


Эта формула доказана нами для плоского движения твердого тела Она имеет большое применение в различных областях механики и, в частности, в теории механизмов и машин, где плоское движение встречается очень часто. Но формула (217) остается справедливой при всяком движении твердого тела Словами ее можно прочитать так кинетическая энергия твердого тела равна кинетической энергии материальной точки, обладающей массой всего тела и скоростью цент[Та масс, плюс кинетическая энергия тела в его вращательном движении вокруг оси, проходящей через центр масс.  [c.361]

Каждое из этих семи всеобщих уравнений движения выглядит так или иначе, в зависимости от того, для какого объекта оно составлено, написано ли оно для одной материальной точки, для твердого тела, совершающего определенное движение, или для изменяемой механической системы. Они могут быть написаны в конечном или в дифференциальном виде. В зависимости от условий задачи приходится выбирать уравнение и форму его, соответствующую заданным условиям. При этом полезно иметь в виду, что если проекции силы являются функциями времени, то часто бывает возможно проинтегрировать уравнения проекций количества движения. Уравнение кинетической энергии дает интеграл в тех случаях, когда силы являются функциями расстояния. Этим часто определяется выбор того или другого уравнения для решения задачи. Выводу семи всеобщих уравнений движения для различных движущихся объектов посвящены 35—37.  [c.132]

Эта формула доказана нами для плоского движения твердого тела . Но она остается справедливой при всяком движении твердого тела. Словами ее можно прочитать так кинетическая энергия твердого тела равна кинетической энергии материальной точки, обладающей массой всего тела и скоростью центра масс, плюс кинетическая энергия тела в его вращательном движении вокруг оси, проходящей через центр масс.  [c.162]

Аксиома 6.1.1. Количество движения, кинетический момент и кинетическая энергия твердого тела могут быть получены интегрированием по объему твердого тела в предположении, что каждый элемент объема движется как материальная точка.  [c.443]

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении  [c.252]

В отличие от изменения количества движения и момента количества движения изменение кинетической энергии материальной системы зависит от работы как внешних, так и внутренних сил. Однако и в этом случае выделение класса внутренних сил оказывается полезным, так как, например, в случае движения абсолютно твердого тела или системы абсолютно твердых тел работа внутренних сил равна нулю, а в случае сплошной среды  [c.105]

Кинетическая энергия твердого тела равна сумме кинетических энергий материальных точек, составляющих это тело  [c.162]

Следовательно, в случае поступательного движения твердого тела его кинетическая энергия вычисляется по той же формуле, что и кинетическая энергия материальной точки.  [c.162]

Всякое твердое тело или механическая система состоит из множества отдельных материальных точек. Поэтому кинетическую энергию твердого тела или какой-либо механической системы можно представить как сумму кинетических энергий всех точек, образующих это тело или систему. Обозначив кинетическую энергию тела или системы буквой , получим  [c.165]

Для системы материальных точек, например для твердого тела, закон кинетической энергии имеет аналогичный вид  [c.168]

Уравнение энергии (теорема живых сил). Если бы мы предполагали, что можно рассматривать твердое тело, как систему отдельных материальных точек, взаимные расстояния которых остаются неизменными, то из этого непосредственно вытекало бы следствие, что приращение кинетической энергии за любой промежуток времени равняется полной работе за это время внешних сил, так как работа сил внутренних равна нулю ( Статика", 50).  [c.103]


Рассматривая твердое тело как систему неизменно связанных материальных точек, можно определить его кинетическую энергию. При поступательном движении скорости всех точек тела в каждый момент времени равны и поэтому кинетическая энергия определяется суммой энергий всех его материальных точек  [c.104]

Полученные формулы, определяющие кинетическую энергию твердого тела при поступательном, вращательном и плоско-параллельном движении, являются важнейшими формулами динамики материальной системы.  [c.127]

Применим сформулированный закон кинетической энергии для материальной системы к простейшим движениям твердого тела.  [c.229]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Как записывается теорема о кинетической энергии системы в дифференциальной и интегральной форме для свободной системы, абсолютно твердого тела и материальной точки 2. Для каких мате-  [c.58]

Очень часто материальная система представляет твердое тело или совокупность твердых тел. В связи с этим нужно уметь определять кинетическую энергию твердого тела при различных видах его движения.  [c.227]

Кинетическая энергия твердого тела равна кинетической энергии, которую имела бы материальная точка, расположенная в центре инерции тела, если бы в ней была сосредоточена вся масса тела, плюс кинетическая энергия тела в его движении относительно системы отсчета, связанной с центром инерции и движущейся вместе с ним поступательно (теорема Кёнига i)).  [c.170]

Теорема Кёнига верна и для общего случая произвольной системы материальных точек. Однако она, как правило, используется при подсчете кинетической энергии твердого тела и поэтому излагается в этой главе.  [c.170]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Приращение кинетической энергии твердого тела или неизменяемой системы материальных точек) равно работе всех заданных активных внешних сил, прилоокенных к телу (или и неизменяемой системе) на рассматриваемом пути. Мы вернемся к формуле (19.27а) в пп. 2.4 и 2.5 гл. XXI.  [c.352]

Мы были лишены возможности привести подобные примеры в 2 гл. XVIII. Дело в том, что хотя понятие кинетической энергии системы материальных точек впервые вводится при выводе уравнений Лагранжа второго рода, однако формулы для подсчета кинетической энергии твердых тел и работы сил при их вращении, необходимые для составления уравнений Лагранжа, появляются позже — в гл. XXI. Теперь мы имеем возможность рассмотреть соответствующие примеры.  [c.404]

Уравнение анергии. В 46 было показано, что кинетическая энергия любой материальной системы равна сумме кинетической энергии всей массы системы, предполагая, что вся масса сосредоточена в центре масс и движется вместе с этою точкою, и кинетической энергии относительного движения по отношению к центру масс. Следовательно, если обозначить через а, v) скорость центра масс, а через <о — угловую скорость вращения, то кинетическая энергия твердого тела, движущегося в двух измерениях, будет  [c.162]


Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

В учебных задачах, как правило, встречаются не материальные точки, а твердые тела. В этом случае при вычислении импульса кинетического момента или кинетической энергии тела надо исходить из того, что пространственное твердое тело характеризуется массой М, положением центра масс S, тремя главными центральными направлениями е, е, е" и соответствующими главными центральными моментами инерции А, В, С. Пусть в некоторой неподвижной системе координат Oxyz точка S имеет радиус-вектор s = OS, и пусть угловая скорость тела относительно Oxyz разложена по (правому) главному реперу  [c.110]

ДИНАМИЧЕСКИЕ ВЕЛИЧИНЫ. Имеются в виду импульс, кинетический момент и кинетическая энергия, которые уже рассматривались применительно к системе свободных материальных точек в 10. В случае, когда система точек образует твердое тело, выражения для этих величин принимают специфический вид в связи с тем, что скорости точек тела образуют распределение, описываемое формулой Эйлера Vp = Vs+[ oXSP], Таким образом, в каждый момент времени скорости зависят от точки тела, а зависимость их от времени проявляется только через векторы Vs, ю, которые являются общими для всех точек тела.  [c.204]

Энергетические методы широко используются для решения самых различных задач механики, в том числе и задач механики твердого деформируемого тела. Начало этим методам положили работы одного из создателей дифференциального и интегрального исчисления Г. Лейбница (1646-1716), который ввел для описания движения материальной точки так называемую живую силу с точностью до множителя 1/2 совнадаю-ш ую с современным понятием кинетической энергии. В механике твердого деформируемого тела и ее разделе — сонротивлении материалов — эти методы также широко используются. С их помощью можно простым путем решать многие сложные задачи. Наиболее просто и наглядно эти методы работают при решении  [c.98]

Таким образом, кинетическая энергия твердого тела, совершающего поступательное движение, вычисляежя так же, как кинетическая энергия материальной точки.  [c.226]


Смотреть страницы где упоминается термин Энергия кинетическая материальной твердого тела : [c.5]    [c.526]    [c.42]    [c.179]    [c.358]    [c.489]   
Курс теоретической механики Изд 12 (2006) -- [ c.412 ]



ПОИСК



Кинетическая энергия материальной точки, системы и твердого тела

Кинетическая энергия—см. Энергия

Материальная

Материальное тело

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая твердого тела

Энергия твердого тела

Энергия тела кинетическая



© 2025 Mash-xxl.info Реклама на сайте