Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о кинетической энергии материальной точки

ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.306]

Теорема о кинетической энергии материальной точки  [c.413]

Теорема о кинетической энергии материальной точки в относительном движении  [c.456]

В задачах этой группы теорема о кинетической энергии применяется обычно в случае, когда для сил, действующих на материальную точку, существует силовая функция. Тогда работа вычисляется по формуле (173).  [c.315]


Заканчивая рассмотрение цикла вопросов, связанных с теоремой об изменении кинетической энергии материальной точки, кратко остановимся на некоторых моментах исторического развития понятий о количестве движения, кинетической энергии и работе механической силы. Эти понятия объединяются общим представлением о мерах движения .  [c.383]

Количество движения и кинетическая энергия, как указывает Энгельс, являются основными мерами механического движения. Из теоремы о количестве движения следует, что эффект действия силы, выражающийся в изменении количества движения материальной точки, измеряется импульсом этой силы. Как увидим в следующем параграфе, эффект действия силы, выражающийся в изменении кинетической энергии материальной точки, измеряется рабо-  [c.406]

ИЗ. Теорема о кинетической энергии для несвободной материальной точки  [c.428]

Как записывается теорема о кинетической энергии системы в дифференциальной и интегральной форме для свободной системы, абсолютно твердого тела и материальной точки 2. Для каких мате-  [c.58]

Т. е. 1) дифференциал кинетической энергии материальной точки на бесконечно малом ее перемещении равен элементарной работе на этом перемещении равнодействующей всех сил, приложенных к этой точке 2) приращение кинетической энергии материальной точки на конечном ее перемещении равно полной работе на этом перемещении равнодействующей всех сил, приложенных к этой точке. При этом элементарная или полная работа силы может быть найдена по формуле (8.4) или (8.5) на основании теоремы о работе сил работу равнодействующей можно заменить алгебраической суммой работ составляющих сил на том же перемещении.  [c.205]

Теорема о кинетической энергии изменение кинетической энергии материальной точки равно работе равнодействующей всех действующих на нее сил  [c.32]

Теорема о кинетической энергии. Пусть материальная точка массой т движется под действием результирующей силы F. Выясним, на что идет работа, совершаемая силой F.  [c.49]

Уравнение (100) называется теоремой о вириале ). Оно не означает, что кинетическая и потенциальная энергии материальной точки в любой момент должны быть связаны этим соотношением утверждение теоремы относится только к средним значениям за длительные периоды времени ).  [c.300]


Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Из теоремы о вириале в ее общем виде (112) следует не только то, что материальные точки, связанные между собой силами, действующими по закону обратных квадратов, должны иметь кинетическую энергию, но и то, что кинетическая и потенциальная энергии такой системы всегда сравнимы по величине. Даже если часть материальных точек в начальный момент не движется, силы притяжения, значения которых обратно пропорциональны квадрату расстояния, сближают эти точки друг с другом, увеличивая как потенциальную, так и кинетическую энергии до тех пор, пока средняя кинетическая энергия не станет равной с обратным знаком половине средней потенциальной энергии. В приводимом ниже примере мы воспользуемся теорем ой. о вириале, чтобы оценить температуру внутри Солнца, представляющего собой, как почти все звезды, массу сжатого раскаленного газа.  [c.302]

Сказанное в 108 по отношению к отдельной материальной точке можно обобщить и на механическую систему материальных точек. Поэтому мы можем аналогичным образом сформулировать и доказать теорему о законе сохранения механической энергии для механической системы. Для вывода этой теоремы напомним, что теорема об изменении кинетической энергии механической системы записывается так (29, 107)  [c.667]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

Прежде всего рассматривается задача о движении материальной точки, находящейся под действием совокупности сил. Формулируются законы Ньютона, выводятся дифференциальные уравнения движения точки. Особо отмечается случай, когда точка находится в равновесии (статика точки). Далее формулируются основные задачи динамики точки и рассматриваются примеры (например, задача о колебаниях точки). Здесь же доказывается теорема об изменении кинетической энергии точки и подробно изучается понятие работы силы и теория потенциального силового поля.  [c.74]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]


Таким образом, в процессе диссипации кинетическая энергия переходит во внутреннюю энергию среды. Согласно теореме об изменении кинетической энергии, любое приращение кинетической энергии (увеличение или уменьшение) системы материальных частиц в каком-то временном интервале равно сумме работ, совершенных всеми внешними и внутренними силами, действующими в рассматриваемый промежуток времени на систему ( /2) — (т,о 2) = = А (/ /) -Ь А,- (Р/), где т — масса V — скорость у4,- (Р)) — работа  [c.11]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]


С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]

Теорема об изменении кинетической энергии позволяет рассматривать движение с энергетической точки зрения. Ее ирименение целесо-oбpaз[ o в тех случаях, когда удается подсчитать работу, совершениу о С11лами, приложенными к материальной точке.  [c.219]

В приведённую выше схему (в несколько более сложном варианте для физико-математических моделей, когда речь идёт как о физических свойствах, так и об их математическом описании) укладывается и развитие отдельных понятий. Уточнение смысла основных применяемых понятий дано в заметках первой главы работы. Дано обобщение понятия материальной точки (заметка 1), рассмотрены понятия скорости и ускорения (заметка 2), обсуждается соотношение виртуальных перемещений и вариаций, используемых в дифференциальных и интегральных принципах (заметка 3). Закон Ньютона о действии и противодействии получен как следствие принципа равновесия Даламбера и второго закона Ньютона. Прослеживается логическая цепь, соединяющая принцип равновесия Даламбера с уравнениями даламберова равновесия , использующими понятие о силе инерции. Предложено описание взаимодействия в форме интегрального равенства (заметка 4). Обсуждаются аналоги теоремы об изменении кинетической энергии для реономных систем и место функции Гамильтона в уравнении энергии  [c.12]

В первой главе было показано, что задача о движении одной точки имеет обнхее решение для сравнительно широкого класса сил. Задача о движении двух точек также имеет общее решение в квадратурах при достаточно общих предположениях о силе взаимодействия между точками (см. 3.1). Однако отыскание общего решения задачи трех и более точек при достаточно общих предположениях о силах взаимодействия встречает непреодолимые трудности. В связи с этим общие теоремы, справедливые при любом числе материальных точек, приобретают громадное значение. Такими универсальными теоремами являются законы изменения и сохранения импульса, кинетического момента и энергии. Рассмотрим ЭТ1И законы для механических систем свободных точек (см. с. 26), или, кратко говоря, для свободных систем.  [c.60]

Шесть уравнений движения тела мы получим, постулируя обобщение основных теорем динамики систем материальных точек теоремы о движении центра масс и теоремы об изменении кинетического момента (см. гл. IV). В некоторых случаях удобно применять обобщение теоремы об изменении кинетической энергии. В случаях, когца рассматривается движение свободного тела или тела с голономными связями, удобны уравнения Лагранжа  [c.372]


Смотреть страницы где упоминается термин Теорема о кинетической энергии материальной точки : [c.407]    [c.50]    [c.179]   
Смотреть главы в:

Руководство к решению задач по теоретической механике  -> Теорема о кинетической энергии материальной точки

Курс теоретической механики  -> Теорема о кинетической энергии материальной точки

Руководство к решению задач по теоретической механике  -> Теорема о кинетической энергии материальной точки



ПОИСК



Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости. Теорема об изменении кинетической энергии при относительном движении

Кинетическая энергия системы материальных точек. Теорема Кёнига

Кинетическая энергия точки

Кинетическая энергия—см. Энергия

Материальная

Примеры применения теоремы об изменении кинетической энергии материальной точки

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии для несвободной материальной точки

Теорема о кинетической энергии материальной точки в относительном движении

Теорема об изменении кинетической энергии в случае движения несвободной материальной точки

Теорема об изменении кинетической энергии для несвободной материальной точки

Теорема об изменении кинетической энергии материальной точки

Теорема об изменении кинетической энергии материальной точки в интегральной форме

Теорема об изменении кинетической энергии материальной точки в относительном движении

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении

Теорема об изменении кинетической энергии при движении несвободной материальной точки. Закон сохранения энергии. Движение по инерции

Теорема об изменении кинетической энергии системы материальных точек

Теорема об изменении кинетической энергии системы материальных точек (в дифференциальной форме)

Теоремы об изменении кинетической энергии материальной точки и механической системы

Точка материальная

Энергия Теорема

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая материальной точки

Энергия кинетическая материальной точки точки



© 2025 Mash-xxl.info Реклама на сайте