Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о кинетической энергии материальной точки в относительном движении

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МАТЕРИАЛЬНОЙ ТОЧКИ В ОТНОСИТЕЛЬНОМ ДВИЖЕНИИ  [c.169]

Замечание. Уравнение (I. 113) можно получить также на основании теоремы об изменении кинетической энергии материальной точки при относительном движении, приведенной в 232 первого тома.  [c.96]

Теорема о кинетической энергии материальной точки в относительном движении  [c.456]

Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости . Теорема об изменении кинетической энергии при относительном движении  [c.446]


По теореме Кенига кинетическая энергия системы материальных точек равна сумме кинетической энергии всей ее массы, движущейся со скоростью центра инерции, и кинетической энергии системы в ее относительном движении по отношению к поступательно движущимся осям координат с началом б центре инерции  [c.284]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]


Теорема об изменении кинетической энергии материальной точки. Пусть точка М совершает переносное движение вместе с подвижно11 системой координат Охуг относительно основной системы координат ОлУА и относительное движение но отношению к системе координат Охуг (рис. 72). Абсолютным движением точки М является ее сложное  [c.329]

Кинетическая энергия твердого тела равна кинетической энергии, которую имела бы материальная точка, расположенная в центре инерции тела, если бы в ней была сосредоточена вся масса тела, плюс кинетическая энергия тела в его движении относительно системы отсчета, связанной с центром инерции и движущейся вместе с ним поступательно (теорема Кёнига i)).  [c.170]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]

Теорема (Кёнига). Кинетическая энергия системы равна сумме кинетической энергии, которую имела бы материальная точка, расположенная в центре масс системы и имеющая массу, равную массе системы, и кинетической энергии движения системы относительно центра масс.  [c.154]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]


Смотреть страницы где упоминается термин Теорема о кинетической энергии материальной точки в относительном движении : [c.179]    [c.240]   
Смотреть главы в:

Курс теоретической механики  -> Теорема о кинетической энергии материальной точки в относительном движении



ПОИСК



Движение материальной точки

Движение относительное

Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости. Теорема об изменении кинетической энергии при относительном движении

Кинетическая энергия относительна

Кинетическая энергия точки

Кинетическая энергия—см. Энергия

Материальная

Относительная кинетическая энерги

Относительное движение материальной точки

Относительность движения

Теорема движения

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии (тео в относительном движении

Теорема о кинетической энергии материальной точки

Теорема об изменении кинетической энергии материальной точки в относительном движении

Точка Движение относительное

Точка материальная

Точка — Движение

Энергия Теорема

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая движения относительного

Энергия кинетическая материальной точки

Энергия кинетическая материальной точки точки

Энергия относительная



© 2025 Mash-xxl.info Реклама на сайте