Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Путь адгезионный

Помимо непосредственного измерения плотности зарядов двойного слоя в процессе адгезии и отрыва пленок эту величину можно определить косвенным путем. Адгезионную прочность можно связать с электрохимическими свойствами пленок, в частности с критическим током анодной пассивации [115]. С увеличением критического тока анодной пассивации адгезионная прочность пленок растет. Так, при увеличении критического тока анодной пассивации от 10 до 50 мкА/см для различных лакокрасочных покрытий адгезионная прочность, полученная измерением на сдвиг, увеличивается от  [c.133]


В качестве диффундирующего элемента не обязательно применять никель, можно применить, в частности, молибден или титан. Если в качестве арматуры использовать молибденовую проволоку, то при нанесении никелевого покрытия образуется адгезионный переходный слой интерметаллида, т. е. происходит вырождение структуры и свойств в результате взаимной диффузии (рис. 3). Механические свойства при этом существенно уменьшаются. Избавиться от этого неприятного явления можно, если формировать на оболочке матрицу путем осаждения вольфрамового диффузионного слоя.  [c.58]

Для выяснения влияния адсорбции газов на поверхности борных волокон на величину адгезионной прочности в боропластиках изучалась адсорбция борными волокнами кислорода, двуокиси и окиси углерода, аммиака, азота и окиси этилена [43, 45]. Оказалось, что адсорбция в каждом случае незначительна и не влияет на предел прочности композитов при испытаниях на сдвиг. В работах [43, 45, 108] делались попытки увеличить реакционную способность борных волокон по отношению к эпоксидным смолам путем обработки волокна треххлористым бором, хлором, трифенил-арсином, азотом и аммиаком при температурах 426—1200 °С (реакционная способность оценивалась по данным о пределе прочности композита на сдвиг или изгиб). Однако такая обработка не дала желаемых результатов. В работе [39] показано, что метанол очищает и активирует поверхность борного волокна.  [c.243]

Традиционные лакокрасочные материалы защищают лишь за счет барьерного и адгезионного факторов, которые не в состоянии обеспечить надежную и длительную защиту, так как полимерные пленки не могут быть абсолютно непроницаемыми для молекул воды и небольших агрессивных ионов, например ионов хлора н фтора. Уже довольно давно было предложено повышать защитные свойства лакокрасочных покрытий путем введения в них так называемых пассивирующих пигментов — таких твердых минеральных порошкообразных веществ, части цы которых при контакте с поверхностью металла облагораживают его потенциал и тем самым делают металл более устойчивым к коррозии. Однако у пассивирующих пигментов есть ряд недостатков. Важнейшие из них следующие.  [c.64]

Обычный рельсовый путь называют (в отличие от зубчатой железной дороги) адгезионным путем (адгезия — молекулярное сцепление). Это название подчеркивает, что здесь главную роль играет сцепление колес с рельсами и, следовательно, трение сцепления. Признаком этого является также непрерывное повышение веса паровозов, сопровождающее увеличение нагрузки или скорости поездов на железнодорожном транспорте. Это обстоятельство прямо указывает на закон трения Кулона [уравнение (14.1)], по которому трение сцепления пропорционально нормальному давлению N, Тот общеизвестный факт, что на слишком скользких рельсах (обледенелых и т. п.) сцепления не получается  [c.115]


Роль частиц износа в понимании механизма разрушения поверхностных слоев при трении важна и многообразна. Их изучение — единственный способ оценить толщину слоя, ответственного за разрушение, что позволяет проводить более обоснованный выбор методов исследования при анализе структурных изменений, предшествующих разрушению на фрикционном контакте. Частицы износа отражают как адгезионные свойства материала, так и его способность деформироваться нри трении. Состав частиц позволяет судить о температуре на фрикционном контакте и о преимущественном износе той или иной фазы в многофазных материалах. Форма и размер частиц — индикатор нормальной работы пары трения. Доказательством важности исследования продуктов износа для понимания механизма изнашивания может служить теория износа отслаиванием , где анализ формы и размера частиц позволил сформулировать механизм их образования и экспериментально подтвердить его путем целенаправленного исследования поверхностных слоев контактирующих материалов [126].  [c.80]

Исследования подтверждают выдвинутое предположение о схватывании порошкообразных частиц с металлической поверхностью, что приводит к выводу об адгезионном механизме, не исключающем, по всей вероятности, некоторые из разобранных выше путей, но являющемся определяющим фактором процесса образования покрытия. Для получения дополнительных данных, подтверждающих и обосновывающих механизм формирования покрытия за счет схватывания, проведено изучение основных факторов, влияющих на сцепление частиц. Необходимым условием для осуществления схватывания является удаление окисных пленок, что дости-  [c.65]

Прочность склеивания металлов может быть значительно повышена путем специальной подготовки поверхности. При работе с алюминиевыми сплавами (плакированными и неплакированными) наиболее широко применяют метод анодного оксидирования. Кроме защитных свойств, анодная пленка обладает также высокими адгезионными свойствами, благодаря чему является хорошей основой для клеевых соединений. Оптимальная толщина пленки 8—12 мк для обшивочных листов изделий, работающих в условиях повышенных нагрузок и температур, 5—8 мк.  [c.279]

В качестве твердых смазок используются порошкообразные графит, дисульфид молибдена, нитрид бора и др. [44]. Методы создания антифрикционной пленки основаны на закреплении частиц порошков на поверхности деталей за счет адгезионного взаимодействия. Поверхность в таких случаях, как правило, предварительно обрабатывают различными механическими или термохимическими методами (пескоструйная обработка, фосфатирование, сульфидирование и т. п.). Применяется также метод закрепления порошков путем введения их в пленки полимеров.  [c.108]

Таким образом, к проблеме изучения трения, адгезионного взаимодействия и изнашивания при высоких температурах относятся разработка испытательной аппаратуры и методов исследования создание новых материалов и покрытий для работы при высоких температурах исследование трения и адгезии материалов в подвижных и неподвижных разъемных сопряжениях (в том числе и применительно к сопряжению обрабатываемый материал — инструмент при обработке давлением и резанием) нахождение путей управления адгезией, или схватыванием, и трением применительно к технологическим процессам твердофазного соединения изыскание способов уменьшения трения, адгезионного взаимодействия и изнашивания.  [c.4]

По экспериментальным данным при сушке угля, песка и других материалов радиус камеры можно выбирать из условия транспортирования материала в газовом потоке. При сушке аммофоса, химических удобрений, ряда органических солей допустимы отложения продукта на стенках камеры, которые в процессе сушки ссыпаются естественным путем или удаляются с помощью скребков, вибраторов или устройств для обдува стенок. Некоторые продукты (сахаристые вещества, органические экстракты) настолько склонны к отложениям, что это приводит к невозможности их сушки распылительным методом, т. е. выбор радиуса камеры должен определяться адгезионными свойствами материалов. При дисковом распыле радиус факела  [c.639]


Метод определения адгезионной прочности покрытий путем отслаивания жидкостью. Этим методом можно определить истинную адгезию покрытия (полностью исключив когезионное или смешанное разрушение), поскольку пленка от подложки отделяется строго по границе покрытие-подложка. Метод основан на том, что в область адгезионного контакта под давлением подводится ад-  [c.76]

При первом виде взаимодействия срез адгезионных связей происходит по оксидным или адсорбированным пленкам, которыми всегда покрыты трущиеся поверхности. Скорость образования оксидных пленок обычно высока, чему способствуют высокие температуры, развивающиеся на поверхностях трения. Разрушение поверхности путем среза оксидных пленок называется окислительным изнашиванием. Это наиболее благоприятный вид изнашивания, при котором процессы разрушения локализуются в тончайших поверхностных слоях.  [c.329]

Одного монослоя примесных атомов достаточно для ослабления адгезионного взаимодействия. Вместе с тем для получения и сохранения атомарно чистых поверхностей необходим вакуум порядка 10 Па и очистка (обычно пучком ионов инертного газа) от окислов и адсорбционных слоев. В абсолютном большинстве технологических процессов такие условия недостижимы и нерентабельны. Альтернативный путь — разрушение поверхностных слоев в процессе или непосредственно перед образованием адгезионного соединения методами, рассмотренными при обсуждении активации поверхностей.  [c.17]

Покрытие для повышения адгезии при наклейке фторкаучуков на металлы. Для повышения прочности сцепления при клеевом креплении фторкаучуков (СКФ-26, СКФ-32) к металлам поверхность металла предварительно смачивают водным раствором аминоалкоксилана (например, 5%-ным раствором аминопропилтриэтоксисилана) и высушивают на воздухе в течение 8—10 ч или при 90° С — 30 мин. На созданный таким путем адгезионный подслой укладывают сырую резиновую смесь и вулканизируют в прессе по обычным режимам (150° С для СКФ-26 и 200° С для СКФ-32 в течение 30 мин). После вулканизации ав=40—50 кгс/см2.  [c.136]

Фирма Abrasive Produ t (США) применяет для упрочнения основы неводостойкой шкурки армирование бумаги путем адгезионного нанесения эластичных металлических слоев, например алюминиевой или стальной фольги, расположенной между слоями бумаги.  [c.80]

Недостаточная адгезионная прочность покрытия, которая приводит к его сколу (отслоеиию) и является следствием самого ТП, так как напыляемые частицы не имеют нужной кинетической анергии и теплоты для образования прочного сцепления с основой. Этот недостаток устраняется путем активирования поверхности перед напылением различными способами пескортруйной или дробеуд рной обработкой  [c.105]

Реализация комбинированного модифицирования инструментальных твердых сплавов слаботочными ионными пучками в режиме ионной имплантации [132] направлена на решение задачи повышения стойкости твердосгглавного режущего инструмента при обработке жаропрочных титановых сплавов на чистовых и получистовых режимах резания. В этих условиях основными причинами изнашивания твердых сплавов являются интенсивные физико-химические процессы адгезионного и диффузионного характера. Поэтому снижение интенсивности изнашивания инструментального материала в данных условиях может быть обеспечено путем управления интенсивностью указанных процессов  [c.226]

Главной особенностью вакуумного напыления методом конденсации ионной бомбардировкой (КИБ) является возможность подготовки поверхности образца путем ее очистки в тлеющем разряде, а также бомбардировкой ускоренными ионами. Бомбардировка ускоренными ионами приводит к частичному распылению материала образца, внедрению ионов в поверхностный слой и создает благоприятные условия для повышения адгезионной прочности покрытия с основой. Состав осажденного гюкрытия и прочность его сцепления с основой определяются составом газовой среды, содержанием остаточных элементов (СО2, О2, Н2О), уровнем вакуума и качеством подготовки поверхности. Для подготовки образцов перед напылением наиболее предпочтительна виброабразивная обработка с последующей очисткой в ультразвуковой ванне. Затем образцы следует промыть в горячей ванне и высушить в струе горячего воздуха.  [c.249]

Деформации сдвига в плоскости адгезионной связи измеряются путем определения величины относительного поворота кольцевых частей образца с помощью рычажного механизма. Рычаг 18 своей кольцевой частью закреплен на наружной неподвижной штанге, а рычаг 19 установлен на выступающей части подвижной внутренней штанги Относительное перемещение рычагов измеряется инди катором 20, снабженным тензометрическими датчиками 21 Электросигналы датчика после усиления поступают на коор динату X потенциометра ПДС-021. Таким образом, результа ты испытания регистрируются в виде диаграммы Р — Д5 Для исследования прочности и деформативности адгезионной связи при высоких температурах предусмотрен нагрев образца электрическим радиационным нагревателем 22 трубчатого типа. Электропитание нагревателя осуществляется от сети однофазного тока. Нагрев образца регулируется терморегулятором ВРТ-3, подключенным к понижающему трансформатору ОСУ-20. Шины понижающего трансформатора соединены с водоохлаждающими токоподводами 23, которые через герметичные уплотнения входят в камеру. Нагрев контролируется хромельалюмелевой термопарой 24, которая через герметичное уплотнение выводится за пределы камеры ЭДС термопары измеряется потенциометром КСП-4.  [c.165]

Таким образом, для выбора компонентов материал0 В с заданной прочностью адгезионного соединения на поверхности раздела можно использовать ряд методов. При этом следует учитывать режим нагружения и назначение материала. Оановное правило при разработке волокнистых композитов состоит в том, что материал с оптимальными свойствами может быть получен путем компромиссного решения с учетом всех действующих факторов.  [c.82]


Шрейдер и др. [9], а затем Шрейдер и Блок [ilO] определили роль каждой фракции неоднородного слоя аппрета в защите адгезионного соединения стекла с эпоксидной смолой от воздействия влаги. Были изготовлены образцы пирексных блоков с аппретиро-ванной поверхностью, причем пленка аппрета содержала разное число составляющих фракций, что достигалось путем изменения характера экстрагирования растворителем. Затем обработанные блоки склеивались эпоксидной смолой. Адгезионное соединение стекло — эпоксидная смола — стекло выдерживалось в горячей воде под нагрузкой 22,5 ктс, и автоматически регистрировалось время, необходимое для разрущения адгезионного соединения ( долговечность соединения ).  [c.131]

После получения предварительных результатов Шрейдер и Блок DIO] исследовали всю поверхность, покрытую аппретом, используя радиоактивный АПС, что позволило непосредственно определить количество АПС на блоках до их склеивания. Установлено, что долговечность адгезионных соединений не зависит от присутствия в неоднородной пленке аппрета фракции 1 (физически адсорбированного продукта гидролиза, удаляемого холодной водой). Слишком большой избыток этой фракции иногда вызывает ослабление адгезионной связи. Максимальная долговечность соединений наблюдается в присутствии наибольшего количества фракций 2 и 3 (хемосорбированного полимерного АПС). При извлечении фракции 2 из пленки аппрета путем экстрагирования кипящей водой до склеивания блоков долговечность адгезионного соединения уменьшается по линейному закону (рис. 8).  [c.131]

Однако линейная зависимость долговечности адгезионного соединения от количеетва АПС, нанесенного на поверхность стекла путем осаждения и выпаривания с последующим экстрагированием (рис. 8), указывает на реакцию нулевого порядка по отношению к концентрации АПС на поверхности раздела. При такой реакции интенсивность миграции водяных паров к поверхности раздела определяет скорость химического взаимодействия. Это наблюдается в случае низкой анергии активации реакции. гидролиза в сочетании с очень медленной диффузией воды.  [c.136]

В работе [40] изучена адгезия усоногих рачков к подводным предметам. Обнаружено, что вначале личинка рачка с помощью присосок на усиках механически прикрепляется к какому-либо предмету. Первоначальная сила сцепления вскоре возрастает под действием адгезивного цемента, обволакивающего усик. Вероятно, этот цемент является жидким белком, который быстро отверждается при контакте с морской водой. Если полярный материал, например мукосахарид или протеин, отверждается путем сшивания или других химических реакций На жесткой поверхности раздела, между ними обязательно должна образоваться адгезионная связь. Воспроизведение подобного механизма отверждения синтетических полимерных материалов на влажной поверхности разде-  [c.214]

Реакционная способность поверхности. Реакционная способность поверхности волокон зависит от ее элементарного состава, функциональности и кристаллографической структуры. Видимо, для создания прочной адгезионной связи в композитах исследования по определению реакционной способности должны быть направлены на достижение оптимального сочетания материалов и их модификаций. В работе [Ш], как и во многих других работах, в качестве критерия реакционной способности поверхности использовалась хемосорбционная способность. В работе [34] реакционная способность поверхности волокон Е-стекла изучалась путем титро-  [c.239]

Деструкция поверхности раздела и волокна. Разрушение адгезионных связей на поверхности раздела и деструкция волокна в значительной мере зависят от типа смолы и волокна (стекло, графит, бор). Изучая влияние химии поверхности стекла на свойства стеклопластиков, Аутвотер и Келлогг [70] обнаружили, что вода поглощается поверхностью раздела стеклянное волокно — смола в 450 раз быстрее, чем смолой. По-видимому, стеклопластики подвержены большей деструкции, чем угле- и боропластики. Вероятно, поглощенная влага воздействует на стеклопластики независимо от адгезионной прочности. Кроме того, очевидно, что под влиянием воды также меняется прочность стеклянного волокна на растяжение. Вода достигает поверхности раздела волокно—- смола либо путем диффузии через смолу, либо путем проникновения че-  [c.287]

В Ленинградском НПО Пигмент рассмотрена возможность модификации порошков полиэтилена высокого давления марки 16802-070 путем сухого смешения с добавками олигомеров или полимеров, содержащих полярные группы, например, эпоксиолигомера [43]. Разработаны порошковые краски на основе ПЭ с добавками ЭО (П-ПО-2267), покрытия которыми сочетают в себе высокую адгезионную прочность и повышенные защитные свойства. Эти краски применяют для покрытия корпусов щелочных аккумуляторов.  [c.89]

Износ контактных поверхностей при низких температурах резания, не оказывающих влияния на скорость износа, происходит в основном путем последовательного отрыва частиц инструментального материала в результате усталостного разрушения под действием многократного адгезионного воздействия обрабатываемого металла. Скорость этого так называемого усталостного износа зависит главным образом от величины сил адгезии на изнашиваемых поверхностях и частоты адгезионных воздействий. Например, в случае точения закаленной стали марки 9Х твердостью НС оЗ со скоростью резания 0,14 м сек быстрорежущими резцами уменьшение толщины среза до величины менее 0,02 шл уменьшает устойчивость нароста и резко увеличивает износ по задним поверхностям. Еще более резко возрастает износ в результате увеличения частоты срывов нароста в случае возникновения вибраций из-за образования стружки надлома при увеличении толщины среза (до 0,22 жм). В случае обработки стали марки 9Х твердостью НЯСАО, когда нарост более устойчив, в аналогичных условиях при изменении толщины среза износ не возрастает.  [c.166]

Некоторые исследователи считают, что оценки глубины фрет-тинг-износа можно получать, основываясь на соотношениях, используемых для анализа адгезионного или абразивного износа, в соответствии с которыми глубина износа пропорциональна нагрузке и полной величине скольжения, вычисляемой путем умножения относительного смещения за цикл на число циклов. Хотя и известны некоторые данные о возможности использования такого подхода [291, для рекомендации его в качестве общего метода, пригодного в различных ситуациях, требуется проведение допол-нш ельных исследований.  [c.490]

Периодические издержки на оплату рабочей силы и материалов разового использования могут быть сокращены путем комбинирования специально подготовленных слоев с вентиляционными отверстиями с соответствующим перфорированным слоем и объединения их в многократно используемый поверхностный слой с отверстиями ( чехол ). Операции по раздельной укладке слоев с вентиляционными отверстиями и перфорированных слоев могут быть заменены одной операцией — укладкой чехла . Полученные таким путем поверхностные слои пригодны для удаления газов как из клеевых соединений во время их отверждения, так и из слоистых пластиков. Внешнее различие между этими двумя областями применения поверхностных слоев с отверстиями состоит в том, что впитывающие слои обычно разделяют уложенные в пакет листы слоистого пластика (см. рис. 14.2 и 14.4) и редко используются при отверждении адгезионных соединений или соот-верждении получаемых в одну стадию слоистых конструкций.  [c.95]


В любом композиционном материале должны быть по крайней мере две различные фазы, разделенные межфазной границей или областью (слоем). Хотя влияние границы раздела на свойства композиционных материалов может быть значительным, его не следует переоценивать. Однако недооценивать его также не следует. Причина, по которой чрезвычайно трудно значительно улуч-щать одновременно такие свойства композиционных материалов как жесткость, механическая прочность и стойкость к росту трещин, кроется, по крайней мере частично, в особенностях и свойствах граничных областей. Так, в простейшем случае, облегчая отслаивание полимерного связующего от стеклянного волокна в полиэфирных стеклотекстолитах, можно добиться повышения стойкости к росту трещин, но при этом прочность понизится, и наоборот, повышая прочность сцепления полимер — наполнитель, можно добиться повышения прочности, но за счет снижения энергии роста трещин. Повысить энергию роста трещин наряду с другими способадми можно классической остановкой трещины (рис. 1.8), тогда как прочность можно повысить путем равномерной передачи усилий с матрицы на волокна, возможной только при прочной адгезионной связи между фазами [25]. При этом следует пом-  [c.41]

Из-за быстрого отверждения и низкого коэффициента диффузии в неметаллической матрице (исключение составляют органоволокниты) в КМ нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адгезионный характер, т.е. осуществляется путем молекулярного взаимодействия. Прочность связи, характеризуемая параметром (т О — прочность сцепления, — коэффициент контакта), повышается с увеличением критического поверхностного натяжения волокна (стс). Для обеспечения высокой прочности связи между компонентами необходимо полное смачивание волокон (которое достигается, например, растеканием жидкого связующего по поверхности волокон) при этом поверхностная энергия волокон должна быть больше поверхностного натяжения жидкой матрицы. Однако для жидких эпоксидных смол, обладающих лучшей адгезией к наполнителям среди других полимеров, поверхностное натяжение составляет 5,0 10 Дж/м , тогда как для углеродных волокон оно находится в интервале (2,7 - 5,8) 10 Дж/м , а дла борных равно 2,0 10 Дж/м . Поверхностную энергию волокон повышают различными методами обработки их поверхности травлением, окислением, вискеризацией. Например, после травления борных волокон в азотной кислоте их критическое поверхностное натяжение достигает сотен джоулей на квадратный метр. На рис. 14.32 видно, что благодаря травлению поверхностное натяжение борного волокна увеличивается и параметр резко возрастает. Это свидетельствует об увеличении прочности связи между волокном и матрицей.  [c.456]

Таким образом, повысить гермети-зуемое давление можно двумя путями увеличением контактного напряжения, т. е. применением высокомодульной резины и увеличением деформации уплотнителя, и повышением коэффициента устойчивости уплотнителя. Первый путь ограничен, так как резины с модулем свыше 10-10 Па теряют свои ценные высокоэластические свойства, а при относительных деформациях сжатия е > 50% резина может быстро разрушаться. Повышение коэффициента устойчивости уплотнителя за счет увеличения его размеров и коэффициента трения также имеет определенный предел. О недостатках способа повышения устойчивости за счет выполнения на уплотняемой поверхности выступов и впадин (см. рис. 3) указывалось выше. Создание прочного адгезионного контакта за счет, например, приклейки уплотнителя к контактирующим поверхностям не всегда допустимо даже в неподвижных соединениях.  [c.16]

Так как энергия водородной связи является обратной функцией числа монослоев воды п (она колеблется от 40 до 115 кДж/моль), наиболее благоприятными в отношении адгезии являются варианты, при которых пленкообразователь взаимодействует с металлом непосредственно (с образованием химических связей, п = 0) или через мономолекулярный слой воды (за счет водородных связей, п = 1). Только в этих случаях, как показывает опыт, обеспечивается высокая и стабильная адгезионная прочность лакокрасочных покрытий. Наметились пути создания покрытий с длительной адгезионной прочностью, основанные на исключении нежелательного действия воды на пленкообразователь использование лакокрасочных материалов, склонных к водовытеснению обезвоживание поверхности (удаление физически адсорбированной воды) гидрофобизация поверхности применение конверсионных покрытий и грунтов.  [c.80]

В некоторых случаях необходимо применять неэлектропроводный порошок припоя. Подобный порошок из меди и оловянносвинцовых припоев может быть изготовлен в виде частиц диаметром 5—500 мкм путем покрытия их слоем диэлектрического органического флюса с температурой плавления ниже температуры плавления припоя, образуюш,его сплошные электроизоляционные покрытия, адгезионно удерживающие частицы припоя на паяемой поверхности. Для этой цели наиболее пригодны полимерные органические флюсы, например канифоль.  [c.74]

Как известно, эффект обратимой растекаемости имеет место при адгезионном взаимодействии основного металла с припоем 115]. При затекании в зазор это явление не наблюдалось. Поэтому другим способом напайки припоями адгезионного типа является создание на паяемой поверхности капиллярного каркаса из восстановленного порошка основного металла. Такой слой может быть получен, например, путем предварительного нанесения на напаи-  [c.321]


Смотреть страницы где упоминается термин Путь адгезионный : [c.366]    [c.96]    [c.265]    [c.71]    [c.190]    [c.45]    [c.90]    [c.77]    [c.126]    [c.151]    [c.32]    [c.262]    [c.129]   
Механика (2001) -- [ c.115 ]



ПОИСК



Пути изменения адгезионной прочности за счет деформации



© 2025 Mash-xxl.info Реклама на сайте